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Abstract
Based on the multi-agent model, an artificial stock market with four types of trad-
ers is constructed. On this basis, this paper focuses on comparing the effects of 
liquidation behavior on market liquidity, volatility, price discovery efficiency and 
long memory of absolute returns when the institutional trader adopts equal-order 
strategy, Volume Weighted Average Price (VWAP) strategy and Implementation 
Shortfall (IS) strategy respectively. The results show the following: (1) the artificial 
stock market based on multi-agent model can reproduce the stylized facts of real 
stock market well; (2) among these three algorithmic trading strategies, IS strategy 
causes the longest liquidation time and the lowest liquidation cost; (3) the liquida-
tion behavior of institutional trader will significantly reduce market liquidity, price 
discovery efficiency and long memory of absolute returns, and increase market vola-
tility; (4) in comparison, IS strategy has the least impact on market liquidity, volatil-
ity and price discovery efficiency, while VWAP strategy has the least impact on long 
memory of absolute returns.
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1  Introduction

Modern financial markets are highly uncertain. In many cases, some institutional 
traders need to liquidate their large asset positions within a short period of time. 
But such quick liquidations usually have notable impacts on asset prices, result-
ing in high liquidation costs. To effectively reduce transaction costs, traders often 
liquidate by splitting orders. However, the extension of transaction time will 
increase time cost and uncertainty risk. Therefore, selecting the effective liquida-
tion strategies to maximize the returns has become an important direction in the 
current research field of algorithmic trading. At the same time, as increasing num-
bers of financial institutions adopt algorithmic trading strategies to conduct trans-
actions, the effects of their trading behavior on some aspects of overall market, 
such as market liquidity, logarithmic returns and volatility, also attract the atten-
tion of investors and market regulators. Nevertheless, the performance and the 
effects on the market of algorithmic trading have not been investigated in depth. 
In order to test the actual implementation performance of different algorithmic 
trading strategies and the effects of institutional investors’ liquidation behavior on 
the market when they adopt liquidation strategies, this paper establishes an artifi-
cial stock market through the multi-agent model and compares several commonly 
used algorithmic trading strategies under the same market environment settings. 
The results may provide important references for the majority of investors and 
regulators in formulating trading strategies and managing market risks.

Researches on liquidation strategies primarily focus on the impact of liquida-
tion behavior on market price (Bertsimas and Lo 1998; Almgren and Chriss 2001; 
Almgren 2003; Almgren and Lorenz 2007; Gatheral 2010), the optimal liquida-
tion path based on different risk criteria (Almgren and Chriss 2001; Gokay et al. 
2011; Forsyth et  al. 2012; Jin 2017), and the application of common algorith-
mic trading strategies, such as IS strategy (Perold 1988; Hisata and Yamai 2000; 
Almgren and Chriss 2001; Almgren 2003; Lorenz and Almgren 2011), VWAP 
strategy (Berkowitz et  al. 1988; Konishi 2002; Humphery-Jenner 2011; Frei 
and Westray 2015), and equal-order strategy or Time Weighted Average Price 
(TWAP) strategy (Kuno and Ohnishi 2015; Stoikov and Waeber 2016). Since IS 
strategy, VWAP strategy and equal-order strategy are widely used in academic 
research and practical application, we will take them as analysis objects in this 
paper.

At present, the analysis and comparison of the execution performance of algo-
rithmic trading strategies are still insufficient, and only a few literatures provide 
some ideas and results. Domowitz and Yengerman (2005) found that the perfor-
mance of algorithmic trading decreased with the increase of order size. Kissell 
(2007) provided two statistical approaches for the comparison of different algo-
rithmic trading strategies. Besides, in terms of the effects of algorithmic trading 
on the market, the current works mainly focus on empirical research. Hendershott 
and Riordan (2009) and Hendershott et  al. (2011) studied data from New York 
Stock Exchange (NYSE) and Deutsche Boerse (DB) respectively and concluded 
that algorithmic trading was helpful in improving liquidity and price efficiency. 
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Chaboud et  al. (2014) and Viljoen et  al. (2014) respectively studied the effects 
of algorithmic trading on foreign exchange market and futures market. Weller 
(2017) demonstrated that algorithmic trading might lower price informativeness. 
Boehmer et al. (2018) analyzed the effects of algorithmic trading on the market 
in 42 global stock markets from 2001 to 2011, and found that algorithmic trading 
improved market liquidity and information efficiency and reduced implementa-
tion shortfalls, but led to the increase of short-term market volatility.

In the study of optimal liquidation strategy, the unverifiability of its theoretical 
results is a fatal flaw. Liquidation behavior usually has an impact on the market. But 
it is difficult to accurately measure the specific impact of different trading strategies 
on various aspects of the actual market in different market environments through 
empirical methods. Therefore, it is hardly to verify and compare the actual perfor-
mance of various liquidation strategies quantitatively. The shortcoming has currently 
affected traders’ investment decisions and made it difficult for market regulators to 
manage market risks.

The emergence of Agent-Based Computational Finance (ACF) provides a way 
to solve the above problems. In 1989, the Santa Fe Institute of the United States 
established the Santa Fe Institute Artificial Stock Market (SFI-ASM), and first used 
the agent-based model to study the stock market. The establishment of the SFI-
ASM model marked the birth of ACF, and the artificial stock market model became 
an important tool of ACF. ACF models the behavior patterns of the agents from 
the micro level through the “bottom-up” approach. It can simulate the interaction 
between the agents and the interaction between the agents and environment more 
intuitively and explain the emerging macro phenomena from the micro perspective. 
Representative literatures on this type of model include (Arthur et al. 1997; Brock 
and Hommes 1998; Bullard and Duffy 1998, 1999; LeBaron et  al. 1999; Johnson 
2002; Raberto et al. 2003; Noe et al. 2003, 2006; LeBaron 2006; Martinez-Jaramillo 
2007; Farmer and Foley 2009; Anufriev et  al. 2013; Battiston et  al. 2016; Ponta 
et  al. 2018; Dieci and He 2018). Tesfatsion (2003), LeBaron (2006) and Mizuta 
(2016) then gave some overviews of the multi-agent financial market model.

Compared with the traditional financial theory models, the ACF method virtu-
ally liberates the strict assumptions in the traditional analytical framework. Based 
on the assumption that traders are heterogeneous and bounded rational, the finan-
cial market is regarded as a complex system with dynamic evolution, which ena-
bles the model to better simulate the real financial market. The simulation results 
can often reproduce various stylized facts that are hardly explained by traditional 
financial theories (Lux 1998; LeBaron et al. 1999; Lux and Michele 2000; He and 
Li 2007; Chiarella et al. 2012). When building an agent-based model, the two most 
typical types of traders are fundamentalists and chartists (trend followers). He and 
Li (2007) introduced fundamentalists and chartists to analyze the mechanism gen-
erating the power-law distribution fluctuations. Chiarella et al. (2012) conducted a 
dynamic analysis of a microstructure model based on the continuous double auction 
mechanism, with heterogeneous agents who can choose to adopt the fundamental 
strategy or the trend follow strategy according to the strategies’ performance. The 
price sequence formed by the simulation characterizes most of the stylized facts 
including the volatility clustering, the leptokurtic and fat-tailed distribution and 
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insignificant autocorrelation of returns. In addition, the method based on multi-agent 
model allows the environment to have feedback on the behavior of the agents. In 
other words, the agents’ trading strategies or transaction behavior will be affected by 
the environment, and the transaction behavior will affect the environment, in turn. 
Compared with traditional testing methods, these ACF models with “response” can 
better help us to study the effects of liquidation strategies on the market.

According to our knowledge, only a few literatures have studied the impacts of 
algorithmic trading on the market based on the multi-agent simulation market. Gsell 
(2008) constructed a multi-agent simulation environment based on the weighted 
behavior model and analyzed two simple algorithmic trading strategies, and the 
results showed that the execution of large positions implemented by algorithmic 
trading might make impacts on the market price and volatility. Lee et  al. (2011), 
Brewer et  al. (2013) and Brogaard et  al. (2017) examined the effects of high-fre-
quency trading (HFT) strategies on financial market by using agent-based model.

In this paper, we conduct an artificial stock market with the continuous double 
auction mechanism based on the model in Chiarella et al. (2012) to simulate the real 
stock market. Based on this model, the performance of the algorithmic trading strat-
egies and the effects of liquidation behavior on the market are studied. We find that: 
(1) the artificial stock market can reproduce stylized facts of real stock market, such 
as leptokurtosis and fat-tail characteristic of returns and the U-shaped distribution 
of the intraday trading volume; (2) IS strategy causes the longest liquidation time 
and lowest liquidation cost; (3) no matter what kind of algorithmic trading strategy 
is adopted, the liquidation behavior of institutional trader will significantly reduce 
market liquidity, price discovery efficiency and long memory of absolute returns, 
and increase market volatility; (4) IS strategy has the least impact on the market 
liquidity, volatility, and price discovery efficiency; while VWAP strategy has the 
least impact on the long memory of the absolute returns.

The remainder of the paper is structured as follows. Section  2 establishes an 
agent-based model framework for an artificial stock market. Section 3 displays basic 
characteristics of the artificial stock market, and on this basis compares the transac-
tion costs of different liquidation strategies. The effects of institutional liquidations 
on the market are analyzed in Sect. 4. Finally, we present the study’s conclusions in 
Sect. 5.

2 � Model and Methods

Based on the work of Chiarella et  al. (2012) and the hypothesis of traders’ 
bounded rationality, we design an artificial stock market (hereinafter referred to 
as “simulated market”) to explore the actual liquidation performance under dif-
ferent algorithmic trading strategies and the influences of liquidation behavior on 
the overall market. To clearly demonstrate and study these influences separately, 
we assume that there is only one stock asset being traded in the simulated mar-
ket and stipulate that traders are not allowed to sell short. Set one minute as a 
trading time period, denoted by t. The total time of one trading day is 240 min, 
that is, t = 1, 2,… , 240 . We set the market to be driven by the continuous double 
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auction trading mechanism, which is the main transaction mechanism of stock 
exchanges in China, including Shanghai Stock Exchange (SSE) and Shenzhen 
Stock Exchange (SZSE), and also widely adopted in other stock exchanges around 
world, including NYSE, National Association of Securities Dealers Automated 
Quotations (NASDAQ), European New Exchange Technology (Euronext) and 
Australian Securities Exchange (ASX). In such market, the limit orders placed by 
traders are matched according to the principle of price priority and time priority. 
The remaining incomplete orders will be stored in the limit order books for later 
matching. The order books will be cleared at the end of each trading day. The 
simulated market that we set primarily includes the fundamentalists who adopt 
the fundamental strategy and the chartists who adopt the trend follow strategy. In 
addition, to guarantee the liquidity of the market, we also introduce random trad-
ers in the simulated market.

Different from the artificial stock market model designed by Chiarella et  al. 
(2012), on the one hand, we add an institutional trader into the basic model com-
posed of three types of heterogeneous traders, i.e. the fundamentalists, the char-
tists and the random traders. The institutional trader holds a large amount of posi-
tions and can adopt different algorithmic trading strategies to liquidate them. On 
the other hand, we design the distribution of trading volume based on the stylized 
facts in the real stock market. At the beginning of each trading day, as the traders 
usually have relatively adequate information, they are more willing to enter the 
market for trading. With the consumption of information, the closer to the middle 
of 1 day’s trading period, the less information traders have, and the less willing 
to trade they are. As the end of the trading period approaches, the information 
acquired by traders accumulates again, which leads to a renewed increase in their 
willingness to trade. Therefore, the U-shaped distribution of intraday trading vol-
ume is formed. To make the simulated market as close as possible to the distribu-
tion of trading volume in the real stock market, we describe the activity of traders 
using a quadratic convex function. In other words, the closer to the beginning 
and end of the trading time of days, the more active traders will be, and the more 
people will enter the market for trading; however, the closer to noon, the less 
active traders will be, and the fewer people will enter the market for trading. At 
the same time, we set the traders’ entry order for each time period to be random.

2.1 � Heterogeneous Traders and Their Trading Strategies

2.1.1 � Fundamentalists

Fundamentalists focus on the fundamental value of the stock and make trading 
decisions based on the difference between the market price of the stock and its 
fundamental value. The fundamentalists will choose to buy the stock when they 
believe it is undervalued compared to its fundamental value and otherwise they 
will choose to sell. Suppose the evolution formula of the fundamental value of the 
stock is as follows:
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where t(t = 1, 2,…) is the trading time period, 𝜎f > 0 is the volatility of the funda-
mental value, and �ft  is a random variable obeying the standard normal distribution. 
Assume that the time when the fundamentalist enters the market is � ∈ [t, t + 1) , and 
the latest transaction price of the stock pt,� is the current market price of the stock. 
The probability that the fundamentalist submits the order at this time sft,� is propor-
tional to the difference between the fundamental value p∗

t
 and the latest transaction 

price of the stock pt,�:

where af > 0 indicates the sensitivity of the fundamentalist’s trading willingness to 
the difference between the fundamental value and the market price. The larger the af  
is, the more sensitive to the price difference between the two, and the more likely it 
is to submit an order in the presence of the spread. We set the direction of submit-
ting order dft,� as

when dft,t = 1 and the trader’s cash can afford at least 1-unit stock position, he/she 
will submit the buy order. When dft,� = −1 and the position held by the trader is not 
less than 1-unit, he/she will submit the sell order. Consistent with the assumption of 
Chiarella et al. (2012), we assume that the price of the order submitted by the trader 
p̃f
t,𝜏

 is subject to a uniform distribution between the current fundamental value p∗
t
 

and the market price pt,�.

Let the order volume submitted by the fundamentalist be

where cashi
t,�

 and hi
t,�

 are the amount of cash and the number of positions held by 
the i-th trader, respectively, and 𝜃 > 0 is the intensity of submitting orders. It can be 
observed from the formula that the composition of the fundamentalist’s order vol-
ume is mainly the product of two parts. The first part is subject to a uniform distri-
bution between 1 and the maximum volume of orders can be submitted ( cashi

t,𝜏
∕p̃f

t,𝜏
 

or hi
t,�

 ), multiplied by the intensity of submitting orders. The maximum volume of 
orders that can be submitted determines that the trader’s order volume is limited by 
his/her own wealth. In the second part, we consider the difference between the fun-
damental value and the market price and use it as an amplifier. In other words, the 
order volume is proportional to the difference between the fundamental value and 
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the market price. At the same time, we also place a limit such that the order volume 
will not exceed its maximum volume of orders that can be submitted ( cashi

t,𝜏
∕p̃f

t,𝜏
 or 

hi
t,�

).

2.1.2 � Chartists

Chartists use the stock’s moving average prices to predict future stock movements and 
make trading decisions. When the current market price of the stock is higher than the 
moving average price, the chartists believe that the stock will continue to rise and they 
choose to buy and otherwise they will choose to sell. The moving average price of the 
stock price determined by the i-th chartist mpLi

t
 is set as

where pclose
t−j

 is the closing price at time t − j , and Li is the length of the time window 
observed by the i-th trader. The probability of the chartist’s order submission is

where ac > 0 is a constant indicating the aggressiveness of the trader’s order sub-
mission, and �Li

t,�
= pt,� − mpL

i

t
 is the difference between the market price and the 

moving average price. We consider the direction of submitting order dc
t,�

 as

when dc
t,�

= 1 and the trader’s cash can afford at least 1-unit stock position, submit 
the buy order. When dc

t,�
= −1 and the position held by the trader is not less than 

1-unit, he/she will submit the sell order.
Suppose that the price of submitting order p̃c

t,𝜏
 is based on the current market price 

pt,�:

where �c ≥ 0 denotes the deviation range between the price of submitting order and 
market price, and �c

t,�
∼ N(0, 1) obeys the standard normal distribution.

Let the order volume submitted by the chartist be

(2.6)mpL
i

t
=

1

Li
⋅

Li∑
j=1

pclose
t−j

(2.7)sc
t,�

=
||||tanh

(
ac ⋅ �Li
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)||||

(2.8)dc
t,�

= sgn
(
�Li

t,�

)

(2.9)p̃c
t,𝜏

= pt,𝜏 ⋅
(
1 + 𝜎c

⋅ 𝜀c
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)

(2.10)q̃c
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In other words, the volume obeys the uniform distribution between 1 and its 
maximum volume of orders can be submitted multiplied by the intensity of sub-
mitting orders.

2.1.3 � Random traders

To ensure market liquidity, we also introduce random traders in the model. The 
direction of submitting order of the random trader is randomly set to bid and 
ask. The price of submitting order is p̃r

t,𝜏
= pt,𝜏 + 𝜎r𝜀r

t,𝜏
 , where �r ≥ 0 denotes the 

deviation range between the price of submitting order by the random trader and 
market price, and �r

t,�
∼ N(0, 1) obeys the standard normal distribution. Similarly, 

the order volume submitted by the random trader q̃r
t,𝜏

 is limited by the maximum 
volume of orders that can be submitted, thus

2.2 � Institutional Trader and Liquidation Strategies

As we all know, institutional traders usually have large positions and needs to 
clean them through liquidation strategies in limited time periods. In this paper, an 
institutional trader is introduced into the simulated market, and he/she can adopt 
three kinds of commonly used algorithmic trading strategies, namely, equal-order 
strategy, VWAP strategy, and the IS strategy to liquidate the position.

2.2.1 � Equal‑Order Strategy

Equal-order strategy is the simplest traditional algorithmic trading strategy, 
which is actually known as TWAP strategy. This strategy divides the trading 
time evenly, and divides the total position to be liquidated equally for submission 
according to the number of division nodes, that is, the quantity of orders submit-
ted in each time period is

where X is the total position and N is the number of subintervals of the trading 
period.

In this paper, the one-day trading period is divided into 240 equal parts in min-
utes, i.e. N = 240.

(2.11)q̃r
t,𝜏

=

⎧
⎪⎨⎪⎩

U
�
1, 𝜃 ⋅

cashi
t,𝜏

p̃rt,𝜏

�
dr
t,𝜏

= 1

U
�
1, 𝜃 ⋅ hi

t,𝜏

�
dr
t,𝜏

= −1
.

(2.12)n =
X

N
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2.2.2 � VWAP Strategy

The VWAP strategy is a trading strategy that breaks up large positions and 
executes them in batches within an agreed period of time, targeting making the 
actual weighted average transaction price close to the weighted average price of 
the whole market volume in this period of time. The VWAP formula is as follows:

where wi = xi

�∑N

k=1
xk is the weight of the transaction volume xi traded at price pi 

for the total transaction volume 
∑N

k=1
xk.

This paper estimates the distribution of the volume per minute within the 
trading day to be liquidated by counting the average of the percentage of 
the volume per minute in the total trading volume on its day in historical data {
w̄i, i = 1, 2… 240

}
 . The total amount of stock position X that needs to be liqui-

dated on that day is split according to this distribution to obtain suborders sub-
mitted every minute 

{
X ∗ w̄i

}
.

2.2.3 � IS Strategy

According to Perold (1988)’s research results, the implementation shortfall is the 
difference between the realized value and the target value determined before the 
transaction, and the IS strategy makes trading decisions with the goal of minimiz-
ing the implementation shortfall. By referring to the method of Hisata and Yamai 
(2000), we assume that the stock price obeys the arithmetic random walk process, 
consider the permanent and temporary impacts generated by the trading behav-
iors in the market and obtain the liquidation strategy under the VaR framework.

Specifically, suppose a stock asset with a total position of X needs to be liq-
uidated within time T and divide T into N subintervals with a time interval of 
Δt = tk − tk−1(k = 0, 1,… ,N) . The total time required for liquidation is satisfied: 
T = N ⋅ Δt . Let the number of shares sold between tk−1 and tk be nk−1,k = xk−1 − xk , 
where xk is the remaining position held at time tk.

According to the general research methods, this paper divides market impact 
into permanent impact and temporary impact. The permanent impact will have a 
lasting impact on the stock price, while the temporary impact will only affect the 
current price. Assume that there is a linear correlation between the permanent 
impact and the number of shares sold nk−1,k , and � is the permanent impact coef-
ficient. Thus, the market price containing the permanent impact is

where � is the volatility of the stock price, � is the drift rate of the price, and 
�k ∼ N(0, 1).

(2.13)VWAP =

∑N

k=1
xk ⋅ pk∑N

k=1
xk

=

N�
k=1

wk ⋅ pk

(2.14)Pk = Pk−1 + � ⋅ Δt
1

2 ⋅ �k + � ⋅ Δt − γ ⋅ nk−1,k
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Suppose the temporary impact and the selling speed of the stock nk−1,k
Δt

 show a 
linear correlation. The stock price containing temporary impact can be written

where � is the temporary impact coefficient.
Then, we can obtain the execution cost as

According to the research results of Bertsimas and Lo (1998), we consider the way 
of even liquidation, that is nk−1,k = X∕N , and substitute (2.15) into formula (2.16). 
Finally, we can obtain

Based on the research results of Hisata and Yamai (2000), we determine the value of 
N by minimizing the maximum expected value of the execution cost C under a certain 
confidence level, namely, the value at risk (VaR) of the execution cost:

where Z� is the α-quantile of the normal distribution. In the simulation, we set 
� = 0.01 . Hisata and Yamai (2000) have shown that, when Δt is small, we can use 
the explicit solution under continuous time to approximate the optimal solution 
under discrete time, and the solution is

The number of optimal suborders finally obtained is

(2.15)P̃k = Pk − 𝜂 ⋅
nk−1,k

Δt

(2.16)C = X ⋅ P0 −

N∑
k=1

nk−1,k ⋅ P̃k.

(2.17)E[C] = −
1

2
� ⋅ Δt ⋅ X ⋅ (N − 1) +

1

2
⋅ � ⋅ X2 +

� ⋅ X2

Δt ⋅ N
+

� ⋅ X2

2 ⋅ N

(2.18)V[C] =
1

3
�2

⋅ Δt ⋅ X2
⋅ N ⋅

(
1 −

1

N

)
⋅

(
1 −

1

2N

)
.

(2.19)min
N

VaR�(N) = min
N

�
E[C] + Z� ⋅

√
V[C]

�

(2.20)T∗ =

�
2
√
3 ⋅ � ⋅ X

Z� ⋅ �

� 2

3

.

(2.21)N∗ =
T∗

Δt
=

�
2
√
3 ⋅ � ⋅ X

Z� ⋅ �

� 2

3
�

Δt.
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3 � Basic Characteristics of the Simulated Market and Transaction 
Costs of Institutional Liquidation

3.1 � The Simulated Market without Institutional Trader

To verify the effectiveness of the model, we first simulate the basic model and 
verify whether the simulation results conform to stylized facts including the lep-
tokurtic and fat-tailed distribution of logarithmic returns and the U-shaped distri-
bution of intraday volume. In the base model, we add 500 fundamentalists, 300 
chartists and 200 random traders. The remaining parameter settings in the model 
are shown in Table 1. 

Table 1   Parameter settings in simulation

Parameter Value Instruction

P
0

500 Initial stock price
h
0

10,000 Trader’s initial position
cash

0
5000,000 Trader’s initial cash

�f 0.0015 Volatility of fundamental value

af 0.05 Probability coefficient of fundamentalists to submit orders
ac 0.05 Probability coefficient of chartists to submit orders
Li {20, 21…100} Time window length for chartists to observe historical data
�c 0.01 Range of which the prices of orders submitted by chartists 

deviate from the market price
�r �f

⋅ P
0

Range of which the prices of orders submitted by random 
traders deviate from the market price

� 10% Intensity of submitting orders

Table 2   Statistics of the returns of simulated market and 29 stocks in SSE 50

Mean Std Kurtosis Skewness Fat-tail index

Simulation results
Mean 4.48E−07 3.54E−03 24.1041 0.0078 0.7675
Std 2.19E−05 2.23E−04 11.2653 0.2737 0.0323
Max 7.13E−05 4.35E−03 147.8428 1.0262 0.8689
Min − 6.30E−05 2.90E−03 9.5306 − 1.9866 0.6685
Median 4.48E−07 3.54E−03 24.1041 0.0078 0.7675
Empirical results
Mean 7.83E−06 2.34E−03 27.3490 0.3012 0.3001
Std 5.38E−06 4.67E−04 11.2764 0.2955 0.2011
Max 2.17E−05 3.27E−03 60.9618 0.8228 0.8288
Min − 1.19E−06 1.00E−03 14.2979 − 0.4699 0.0019
Median 7.83E−06 2.34E−03 27.3490 0.3012 0.3001



1036	 Q. Luo et al.

1 3

We generate stock data through the simulated market with the window of 20 
trading days, repeat it 1000 times, and calculate the logarithmic returns’ mean, 
standard deviation, kurtosis, skewness and fat-tail index (see “Appendix 1”). As 
a comparison, we select the minute data of 29 constituent stocks in the SSE 50 
index in 2015 (see Table 7 in “Appendix 2”) and calculate the above indicators. 
The SSE 50 index is a sample stock composed of 50 most representative stocks 
with large scale and good liquidity in SSE, which can comprehensively reflect the 
overall situation of the most influential group of leading enterprises in Shanghai 
stock market. Considering the integrity and availability of data, we select 29 con-
stituent stocks in SSE 50 index, each of which contains more than 55,000 pieces 
of minute data.

The simulation and empirical results are shown in Table 2. It can be observed 
that the mean value, standard deviation, kurtosis and skewness of returns in both 
the simulation results and the empirical results are very close. Furthermore, the 
mean value of returns in both sets of results is close to 0; the kurtosis is signifi-
cantly greater than 3; and the fat-tail index is significantly less than 2, indicating 
that both the simulation results and the empirical results show obvious leptokur-
tic and fat-tailed characteristics. It should be noted that to verify the robustness 
of the simulated market, we also show the results of the simulation window of 
10 days, 30 days, 40 days and 50 days in Table 8 in “Appendix 2”. The results 
show that the above indicators do not change significantly with the change of 
simulation days, indicating that the simulation results are stable and our model 
is reasonably designed, which can well simulate the real stock market. Therefore, 
the model can be further used as a basic model to study the performance of dif-
ferent liquidation strategies and the effects of liquidation behavior on the market.

In addition, we analyze the simulation data of intraday trading volumes and 
show the results in Fig. 1. Figure 1a shows the distribution of the trading volume 
per minute of the stock in a certain trading day. The daily average trading volume 
per minute distribution for 1000 simulation results in 20 trading days is shown 

(a) (b)Schematic diagram of the time 
distribution of trading volume (1 trading 
day)

Schematic diagram of the time 
distribution of the trading volume (average 
of 1000 simulation results in the window of 

vo
lu

m
e

vo
lu

m
e

20 trading days

Fig. 1   Schematic diagram of volume–time distribution
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in Fig. 1b. As can be observed in Fig. 1b, the simulated intraday trading volume 
presents a typical U-shaped distribution.

3.2 � Transaction Costs of Institutional Liquidation

In this section, we introduce an institutional trader based on the basic model of the 
simulated market above and conduct the simulation experiment with the window of 
40 trading days. Assume that the institutional trader needs to sell all of the 2 mil-
lion positions in a certain period of time, with the total number of position being 
recorded as HA . Before liquidation, the institutional trader first observes the stock 
market operation in the first 20 days and begins liquidating on the 21st trading day. 
According to the analysis of historical data, the institutional trader uses the equal-
order strategy, VWAP strategy and IS strategy to liquidate respectively. During the 
liquidation process, the institutional trader submits suborders in the form of market 
orders.

Under the equal-order strategy, the institutional trader splits the large order into 
240 equally sized small orders corresponding to 240  min in one trading day, and 
then submits these suborders for liquidation by minute on the 21st trading day. 
Under the VWAP strategy, the institutional trader splits the total position into 240 
suborders according to the distribution of the minute trading volume on the 21st day, 
which is estimated by the volume distributions in the first 20 days, and then sub-
mits the suborders for liquidation in every minute on that day. Under the IS strategy, 
we consider Δt equals 1, which means that the institutional trader submits subor-
ders each minute, and the number of optimal suborders N∗ can be determined as the 
description of the IS strategy component in Sect. 2.2. Then the volume of suborders 
under the optimal liquidation strategy is HA∕N

∗ . The temporary impact coefficient � 
and the volatility � are obtained by the method proposed by Glosten and Lawrence 
(1988) and the calculation method of realized volatility, respectively, based on the 
stock data of 20 days before liquidation.

Table 3   Cost ratios under the 
three liquidation strategies

Cost rate Equal-order (%) VWAP (%) IS (%)

Mean 0.35 0.30 0.13
Std 1.45 1.40 2.14
Max 5.37 5.07 7.91
Min − 5.82 − 5.16 − 8.17
Median 0.38 0.31 0.18

Table 4   Significance test of cost 
ratios under the three liquidation 
strategies (p-value)

Equal-order VWAP IS

Equal-order – 0.4037 0.0064
VWAP 0.4037 – 0.0354
IS 0.0064 0.0354 –
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To compare the liquidation costs under different algorithmic trading strategies, 
we define the liquidation cost ratio as CL =

(CEL−CRL)
CEL

× 100% , where CEL is the 
expected liquidation return (the product of the market price and the position to be 
liquidated at the beginning of liquidation), and CRL is the actual liquidation return 
(the actual cash received after liquidation).

The cost rates of the three liquidation strategies adopted by institutional trader 
and the independent sample t test among them are shown in Tables 3 and 4. The 
results show that IS strategy has the most remarkable effect in reducing cost, and 
its average cost rate is 0.13%. And since the p-values of the independent sample 
t-test with equal-order strategy and VWAP strategy are 0.0064 and 0.0354 respec-
tively, IS strategy is statistically significantly better than them in terms of liquidation 
cost. Although the average cost rate of the VWAP strategy (0.30%) is better than 
that of the equal-order strategy (0.35%), there is no statistically significant difference 
between the two strategies (the p-value is 0.4037). On the other hand, the standard 
deviation of the cost rate is the highest under the IS liquidation strategy, which is 
2.14%. Specifically, the mean of the optimal liquidation days of the IS liquidation 
strategy in 1000 simulations is 2.32 days (557 min), and the median is 2.39 days 
(574  min), which is generally longer than the one day liquidation time under the 
equal-order strategy and the VWAP strategy. This finding suggests that the longer 
the liquidation takes, the greater the market uncertainty that traders encounter, and 
the volatility of the liquidation costs will also expand.

4 � Effects of Institutional Trader’s Liquidation on the Market

In order to analyze the effects of institutional trader’s liquidation behavior on the 
entire market, we introduce several market indicators in aspects of market liquidity, 
volatility, price discovery efficiency and long memory of absolute returns. We then 
compare the market qualities when there is no institutional trader’s liquidation and 
when the institution liquidates under three different strategies.

4.1 � Market Indicators

4.1.1 � Liquidity

Liquidity is the ability of an asset to be quickly liquidated at a reasonable price. We 
introduce three indicators to measure market liquidity: order transaction ratio PVt , 
daily turnover rate TRd and relative bid-ask spread PRt . The calculation formulas are 
as follows:

(4.1)PVt = Vt∕Qt

(4.2)TRd = Vd∕CE × 100%
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where Vt is the trading volume per minute, Qt is the volume of orders submitted 
per minute, Vd is the daily trading volume, CE is the circulating stock capital, pat 
is the best ask price on order book at the end of each minute, and pbt is the best bid 
price. Specifically, the higher the order transaction ratio and turnover rate are (or the 
smaller the relative bid-ask spread is), the better market liquidity is.

4.1.2 � Volatility

Volatility is an important indicator to measure the level of market risk. This paper 
uses historical volatility and relative volatility to measure the volatility of the mar-
ket. The historical volatility is

where RT represents the selected time window when calculating volatility, rt rep-
resents the logarithmic return at each minute, and r̄ represents the average value of 
{ rt }. Additionally, the relative volatility is

where HP and LP are the highest and lowest transaction prices, respectively, within 
a day.

4.1.3 � Price Discovery Efficiency

The price discovery efficiency measures whether the market price sufficiently 
reflects the information about fundamental value. Generally, the more liquid and 
transparent the market is, the more efficient the price discovery of the market will 
be. To measure the efficiency level of price discovery in the market, we construct the 
price deviation indicator by dividing the absolute value of the difference between 
the actual market price and the fundamental value by the fundamental value.

Hence, the smaller the PL is, the higher the price discovery efficiency of the mar-
ket is.

4.1.4 � Long Memory of Absolute Returns

We use the Hurst exponent to measure whether the time series of absolute returns 
has characteristics of long memory and use the R/S analysis method first proposed 
by Mandelbrot (1963) to calculate it. The specific steps of the R/S analysis method 
are as follows.

(4.3)PRt = 2 ×
(
pat − pbt

)
∕
(
pat + pbt

)

(4.4)ER2 =
1

RT − 1

RT∑
t=1

(
rt − r̄

)2

(4.5)RR = 2 × (HP − LP)∕(HP + LP)

(4.6)PL =
||pt − p∗

t
||

p∗t
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For a time series 
{
yt
}
 of length T  , the sequence is divided into M equal length 

subsequences whose length is n, that is, T = M × n . Let ym,i be the i-th element in 
the subsequence m(m = 1, 2,… , T) , with the mean of Ȳm =

1

n

∑n

i=1
ym,i and the 

standard deviation of Sm =

�
1

n

∑n

i=1

�
ym,i − Ȳm

�2 . The cumulative dispersion of the 

i-th element in the subsequence m is Ym,i =
∑i

j=1

�
ym,j − Ȳm

�
 , and the range of the 

subsequence m can be obtained as Rm = max
(
Ym,i

)
− min

(
Ym,i

)
 . Then, Rm∕Sm is the 

remark range of subsequence m , and the remark range of the sequence with length n 
is

The following empirical formula should be satisfied for the remark range and the 
sequence length.

Take the logarithm of both sides of the above formula.

When the original sequence is segmented, the corresponding (R∕S)n is obtained 
according to the different values of n ; then the OLS of n is conducted to obtain the 
value H of the Hurst exponent.

4.2 � Comparison of Institutional Liquidation Results

4.2.1 � Effects of Liquidations on The Market

We first compare the order transaction ratio, turnover rate, relative bid-ask spread, 
historical volatility, relative volatility, PL and Hurst exponent of the market with and 
without an institutional trader’s liquidation. The statistical results of indicators are 
shown in Table 5.

As can be observed in Table 5, compared to the situation without an institution’s 
liquidation, during institutional liquidation, (1) in terms of the liquidity indicator, 
the market transaction ratio and the turnover rate are reduced and the market bid-
ask spread is expanded, indicating that the market liquidity worsens and the institu-
tional liquidation behavior has consumed market liquidity to a certain extent; (2) in 
terms of the volatility indicator, both the historical volatility and the relative volatil-
ity of the market are significantly increased, indicating that institutional liquidation 
behavior significantly increases the market volatility; (3) in terms of price discovery 
efficiency, the PL value has been expanded from 0.028 in the market without institu-
tional liquidation to 0.064, 0.0058 and 0.0043 respectively, indicating that the price 
discovery efficiency has been significantly reduced in the market with institutional 

(4.7)(R∕S)n =
1

M

M∑
m=1

(
Rm∕Sm

)
.

(4.8)(R∕S)n = CnH

(4.9)ln
(
(R∕S)n

)
= ln(C) + H ⋅ ln(n)
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liquidation; (4) in terms of the long memory of absolute returns, the Hurst exponent 
decreases obviously, indicating that the liquidation behavior of the institution sig-
nificantly weakens the long memory of absolute returns.

Finally, we conduct an independent sample t-test on the above statistical results to 
verify whether there are significant differences in market indicators between institu-
tional liquidation and no-liquidation. The p-values of independent sample t-test of pair-
wise comparison of different situations in each market indicator are shown in Table 6.

As can be observed in Table 6, the p-values of the test on all market indicators 
with and without institutional liquidation are 0.000 (see the first to the third row 
in Table 6). This finding shows that no matter which kind of liquidation strategy is 
adopted, each indicator of the market changes significantly after the institution takes 
liquidation behavior. Specifically, institutional liquidation significantly reduces mar-
ket liquidity, price discovery efficiency and long memory of absolute returns, and 
increases market volatility.

4.2.2 � Comparison of Effects Under Different Liquidation Strategies on the Market

Finally, on the basis of Tables 5 and 6, we can further compare the differences in the 
effects of liquidation behaviors under different liquidation strategies on the market.

Table 5   Comparison of the indicators with or without institutional liquidation

Ord. trans. 
rat. (%)

Turn. rate 
(%)

Bid. spr. Hist. vol. Rel. vol. PL Hur. exp.

No Liqu. Mean 24.72 38.45 0.0016 1.25E−05 0.0560 0.0028 0.6234
Std 0.12 0.80 0.0001 1.59E−06 0.0035 0.0001 0.0506
Max 25.25 41.20 0.0019 1.89E−05 0.0680 0.0031 0.7937
Min 24.37 35.74 0.0014 8.41E−06 0.0459 0.0025 0.4878
Median 24.70 38.43 0.0016 1.24E−05 0.0558 0.0028 0.6197

Equal-order Mean 21.70 33.21 0.0050 4.46E−05 0.0717 0.0064 0.4589
Std 0.40 3.20 0.0005 2.95E−05 0.0234 0.0019 0.0697
Max 23.71 55.00 0.0072 4.73E−04 0.4253 0.0520 0.6638
Min 20.49 23.43 0.0035 6.24E−06 0.0321 0.0036 0.2400
Median 21.70 33.16 0.0050 3.94E−05 0.0683 0.0063 0.4584

VWAP Mean 22.18 33.06 0.0045 4.35E−05 0.0708 0.0058 0.4749
Std 0.37 2.97 0.0004 3.25E−05 0.0215 0.0013 0.0703
Max 23.77 44.41 0.0059 6.65E−04 0.3427 0.0201 0.7100
Min 20.92 25.41 0.0030 5.39E−06 0.0263 0.0029 0.2717
Median 22.18 32.95 0.0044 3.75E−05 0.0677 0.0057 0.4761

IS Mean 23.71 33.15 0.0030 3.66E−05 0.0708 0.0043 0.4563
Std 0.84 2.53 0.0007 3.30E−05 0.0180 0.0017 0.0538
Max 25.74 46.15 0.0070 6.57E−04 0.2656 0.0324 0.6454
Min 17.95 24.59 0.0018 5.26E−06 0.0318 0.0023 0.3054
Median 23.87 33.16 0.0028 3.08E−05 0.0683 0.0040 0.4543
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In terms of market liquidity, regarding the two indicators of order transaction 
ratio and bid-ask spread, when the institutional investor uses IS strategy for liqui-
dation, the average value of order transaction ratio is the highest (23.71%) and the 
average value of bid-ask spread is the lowest (0.0030). Therefore, the IS strategy 
performs best, the VWAP strategy follows (22.18% and 0.0045, respectively), and 
the equal-order strategy performs the worst (21.70% and 0.0050, respectively). 
According to the results in Table  6, the three strategies show statistically signifi-
cant differences in order transaction ratio and bid-ask spread, indicating that IS can 
reduce the consumption of market liquidity caused by liquidation behavior to the 
greatest extent among them. In terms of turnover rate, although there are differences 
in the average turnover rate of the three strategies, the differences are not statistically 
significant among the three. Hence, there is no significant difference in the effect of 
the three liquidation strategies on the market turnover rate indicator. In general, IS 
strategy performs best in reducing the effect on market liquidity.

In terms of market volatility, the average historical volatility under IS strategy is 
the lowest (3.66E−05), followed by VWAP (4.35E−05), and equal-order strategy is 
the highest (4.46E−05), showing statistically significant differences from Table 6. 
On the relative volatility indicator, although the average relative volatilities (both 
0.0708) under VWAP strategy and IS strategy are better than that under equal-order 
strategy (0.0717), there is no statistically significant difference between the three 
strategies. In general, compared with the other two strategies, IS strategy can mini-
mize the impact of liquidation behavior on market volatility and ensure the stability 
of the market to the greatest extent.

In terms of the price discovery efficiency, the average value of PL under IS strat-
egy is the lowest (0.0043), followed by VWAP (0.0058), and equal-order strategy is 
the highest (0.0064), and they show significant differences in statistics from Table 6. 
This illustrates that IS strategy can minimize the impact of liquidation behavior on 
market price discovery efficiency and has the best performance.

In terms of the long memory of absolute returns, the Hurst exponent under 
VWAP strategy is the highest (0.4749), which is closest to the scenario of no-liq-
uidation, followed by equal-order strategy (0.4589) and IS strategy (0.4563). By 
statistical analysis, the p-value of the significance test of the Hurst exponent under 
the equal-order strategy and the IS strategy is 0.3629, indicating that there is no 
significant difference between them. The Hurst exponent under VWAP strategy is 
significantly different from the equal-order strategy and IS strategy (both p-values 
are 0.0000), indicating that the VWAP strategy has the least impact on the market 
long memory of absolute returns.

5 � Conclusions

To better understand the effects of the liquidation of large positions in the short term 
by institutional investors on the market, we design and establish a simulated market 
based on the multi-agent model method, including fundamentalists, chartists and ran-
dom traders, to simulate the actual stock trading market. The simulation results can 
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reproduce the stylized facts in the real financial market well, indicating that our model 
provides a suitable experimental platform for the subsequent analysis.

Then, we introduce one institutional trader into the basic model of the simulated 
market and study the liquidation performance of the equal-order, VWAP and IS strate-
gies respectively. Finally, we compare and analyze the effects of the liquidation behav-
ior under these three strategies on market liquidity, volatility, price discovery efficiency 
and long memory of absolute returns under the same market environment settings, and 
conclude the following: (1) compared with the equal-order strategy and VWAP strat-
egy, the IS strategy can significantly reduce the liquidation cost, but causes the larg-
est standard deviation of the liquidation cost and the longest liquidation time; (2) by 
comparing the data with and without liquidation behavior, we find that the institutional 
liquidation will reduce the market liquidity, price discovery efficiency and long mem-
ory of absolute returns, and increase the market volatility; (3) through the horizontal 
comparison of the three liquidation strategies, it is found that the IS strategy has the 
best performance in reducing the impact of liquidation behavior on the market liquidity, 
volatility and price discovery efficiency, while VWAP strategy has the least impact on 
the long memory of absolute returns.

Currently, this paper assumes that there is only one risk asset in the market, and 
only discusses the effects of liquidating large positions on the market within the range 
of several commonly used algorithmic trading strategies based on single asset, without 
considering the scenarios of multiple assets and corresponding more complicated liqui-
dation strategies for portfolios. These will be further considerations in future research.
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Appendix 1: Fat‑tail Index (Shape parameter)

A large number of empirical studies show that the logarithmic return distribution has 
an obvious fat tail characteristic, and the probability of extreme changes is signifi-
cantly higher than the corresponding probability of the normal distribution. The tail of 
the normal distribution decays exponentially to zero, while the tail of the logarithmic 
returns approximately decays as a power function, namely, high kurtosis. We use the 
generalized error distribution (GED) to measure the leptokurtic and fat tail characteris-
tic of logarithmic returns of financial assets. The probability density function of GED 
is as follows:

(6.1)fs(x) =
�s

2�
(

1

s

)exp{−|�(x − �)|s}
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where � =

[
�

(
3

s

)

�

(
1

s

)
] 1

2

 , and s is the shape parameter. When s = 2, GED degenerates to 

a normal distribution; when s = 1 , GED degenerates to a Laplace distribution. When 
0 < s < 2 , we can consider that the distribution has the characteristic of fat tail and 
call the shape parameter s the fat-tail index. The closer the value of the fat-tail index 
is to 2, the less significant the distribution’s fat-tailed characteristic is; otherwise, the 
closer it is to 0, the more significant the fat-tailed characteristic is. The measurement 
of s can be obtained by solving the maximum likelihood function. The specific pro-
cess is as follows.

According to formula (6.1), the maximum likelihood function of shape 
parameter s of GED can be obtained. Assuming N observation values, then after 
the zero-mean, we can obtain:

According to the first order condition theorem, take the partial derivatives 
and set them equal to 0:

thus, we have

where � (t) =
d

dt
[ln� (t)] =

1

∫
0

1−x(t−1)

1−x
dx − � and � is Euler’s constant. The tail shape 

parameters can be obtained according to Eq. (6.5).

(6.2)

L(�, s) =

N∏
i=1

f
(
xi;�, s

)
=

N∏
i=1

�s

2�
(

1

s

)exp{−||�xi||s
}
=

(�s)N(
2�

(
1

s

))N
exp

{
−

N∑
i=1

||�xi||s
}

(6.3)ln (L(�, s)) = N ln (�) + N ln

⎛⎜⎜⎜⎝
s

2�
�

1

s

�
⎞⎟⎟⎟⎠
−

N�
i=1

���xi��s.

�ln(L(�, s))

��
= 0

�ln(L(�, s))

�s
= 0
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�
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Appendix 2

See Tables 7 and 8.

Table 7   Descriptive statistical results of the stock returns of 29 constituent stocks in SSE 50 in 2015

Stock Mean Std Kurtosis Skewness Fat-tail index

SH000963 8.91E−06 1.00E−03 18.0100 − 0.0635 0.8288
SH600011 1.07E−05 2.49E−03 24.8873 0.2124 0.2237
SH600018 5.41E−06 2.52E−03 21.4907 0.4547 0.0019
SH600019 8.20E−06 2.36E−03 16.9662 0.4324 0.1669
SH600021 2.08E−05 3.21E−03 37.3306 0.4469 0.4520
SH600048 7.94E−06 2.37E−03 14.3242 0.5071 0.2746
SH600050 2.17E−05 2.78E−03 19.0419 0.7197 0.2527
SH600068 9.36E−07 2.45E−03 24.9366 0.3426 0.1018
SH600309 4.41E−06 2.23E−03 60.9618 − 0.4699 0.4006
SH600406 4.41E−06 2.74E−03 17.0823 0.2994 0.3605
SH600549 3.61E−06 2.53E−03 19.5371 0.5369 0.4319
SH600583 1.10E−05 2.65E−03 27.8334 0.3642 0.2714
SH600660 4.73E−06 1.78E−03 19.8310 0.1195 0.2543
SH601006 5.34E−06 2.37E−03 26.5444 0.2716 0.0024
SH601328 5.30E−06 2.19E−03 33.5682 0.4988 0.0028
SH601628 1.06E−05 2.29E−03 27.5759 0.7034 0.6756
SH601857 1.32E−05 2.10E−03 24.6780 0.6055 0.2747
SH601958 9.43E−06 2.70E−03 16.0002 0.2162 0.2711
SH601998 1.24E−05 2.50E−03 20.4184 0.5204 0.2142
SZ000001 3.14E−06 1.83E−03 31.4390 0.0402 0.1970
SZ000100 4.31E−06 2.53E−03 24.5485 − 0.1674 0.1095
SZ000333 2.75E−06 2.03E−03 26.9421 0.2254 0.5101
SZ000338 − 1.19E−06 2.06E−03 23.1864 0.1128 0.1847
SZ000402 3.25E−06 2.50E−03 14.2979 0.2119 0.0030
SZ000538 1.12E−05 1.83E−03 43.7585 0.8228 0.5035
SZ000651 4.95E−06 2.01E−03 32.4358 0.1967 0.5083
SZ000895 3.99E−06 1.71E−03 33.5028 0.0490 0.3844
SZ002475 1.47E−05 2.91E−03 36.9480 0.6503 0.4428
SZ300003 1.07E−05 3.27E−03 55.0436 − 0.1239 0.3990
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