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Phases and homogeneous ordered states in alignment-based self-propelled particle models
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We study a set of models of self-propelled particles that achieve collective motion through similar alignment-
based dynamics, considering versions with and without repulsive interactions that do not affect the heading
directions. We explore their phase space within a broad range of values of two nondimensional parameters
(coupling strength and Peclet number), characterizing their polarization and degree of clustering. The resulting
phase diagrams display equivalent, similarly distributed regions for all models with repulsion. The diagrams
without repulsion exhibit differences, in particular for high coupling strengths. We compare the boundaries
and representative states of all regions, identifying various regimes that had not been previously characterized.
We analyze in detail three types of homogeneous polarized states, comparing them to existing theoretical and
numerical results by computing their velocity and density correlations, giant number fluctuations, and local
order-density coupling. We find that they all deviate in one way or another from the theoretical predictions,
attributing these differences either to the remaining inhomogeneities or to finite-size effects. We discuss our
results in terms of the generic or specific features of each model, their thermodynamic limit, and the high mixing
and low mixing regimes. Our study provides a broad, overarching perspective on the multiple phases and states
found in alignment-based self-propelled particle models.
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I. INTRODUCTION

The spontaneous emergence of collective dynamics in
groups of active, self-propelled components is widely ob-
served in nature. A variety of animals, including insects [1-3],
birds [4-6], fish [3,7,8], and mammals [9], can achieve long-
range ordered movement through short-range interactions. In
addition, groups of nonliving self-propelled components have
also been shown to exhibit self-organized collective motion
[10-12]. The analysis of these systems has led to multi-
ple fundamental questions, across disciplines. What emergent
structures and dynamics can be observed? How are these con-
nected to individual motion and interaction rules? Are there
coarse-grained states that are independent of specific details?

Self-propelled particle (SPP) models have been an impor-
tant tool for exploring the general collective properties of
active systems, without focusing on specific living or nonliv-
ing agents [3,13—16]. In these models, the active components
are represented by particles that self-propel along their head-
ing directions, with velocities that depend on the states and
dynamics of other particles, such as the relative positions or
velocities of neighbors. Many of the commonly used interac-
tion rules are based on a tendency to (ferromagnetically) align
with neighboring particles, since this can lead to large-scale
collective motion by directly matching the local individual
velocities or headings.
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One of the simplest possible and most widely used SPP
models is the Vicsek model [17]. This is an alignment-based
algorithm that was introduced as a nonequilibrium extension
of the classical XY model. Here spins are replaced by particles
that advance at a fixed speed in their pointing direction and
instantaneously align at each timestep to the average heading
of all particles within a given interaction range. The control
parameters of the standard Vicsek model can be reduced to the
scaled mean density of the system, the intensity of an added
orientational noise with respect to the velocity, and the ratio of
the mean-free path to the radius of interaction. Despite its sim-
plicity, the Vicsek model can produce a surprising variety of
ordered and disordered collective states with different density
distributions. These have attracted significant attention over
the past decades, such as those involving the emergence of
long-range orientational order, clustering, moving bands, and
cross-sea patterns [18-20].

A number of more realistic SPP algorithms have extended
the Vicsek model in different ways to consider, for exam-
ple, the gradual alignment of particles in continuous time,
repulsive interactions, and speed-density or speed-order cou-
pling [21-24]. Many studies have also focused on specific
collective states, such as homogeneous order [25-27], bands
[19,28,29], motility-induced phase separation [30], and clus-
tering [18,22,31]. This has led to a plethora of results that
may or may not be generic or specific to given algorithms or
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simulation choices. Some research has tried to overcome this
issue by using dimensionless quantities that are expected to be
model independent. In Ref. [22], for example, the phase space
of an SPP model with continuous alignment and repulsion was
explored in terms of two nondimensional parameters that are
also valid for other models; the alignment coupling strength
and the Peclet number. Very few works have compared the
results of different SPP models, however, to examine which
features may be common to all of them and which are model
dependent [32].

A different approach for studying universal emerging states
in SPP systems has been applied to derive hydrodynamic field
equations, which capture coarse-grained dynamics that are
expected to be independent of the microscopic details. In their
seminal work, Toner and Tu first wrote this type of equations
using symmetry arguments [25,33,34]. Other groups have
since derived similar macroscopic descriptions from the mi-
croscopic, individual particle level through a variety of meth-
ods [35-38]. This approach has helped unveil various general
features of the SPP systems, their order-disorder transition,
and the density-order feedback that leads to spatial structures
and fluctuations [26,35-38]. It has also been extensively used
to compute the analytical properties of perturbations about the
homogeneous ordered “flocking” state [25,33,34]. These have
been tested numerically through SPP simulations, which have
partially confirmed their predictions [11,27].

Despite the multiple numerical and analytical studies of
SPP systems that have been carried out for over two decades,
many questions still remain open. One particularly lacking
aspect is our understanding of the generic and specific nature
of the various states that are found using different models
and in different regions of the phase space, as well as their
connection to the analytical results obtained from the hydro-
dynamic theory. Note that here we use the term “generic” in
a broad sense, referring to common properties of the states or
the parameter space that are shared across different models.

In this paper, we address these issues by simulating four
different SPP models with similar alignment-based dynam-
ics, with and without repulsive interactions that do not affect
the particle headings. We compare their results for a broad
range of parameters, following the approach developed in
Ref. [22], to explore and compare their phase spaces as a
function of dimensionless coupling strength and Peclet num-
ber. We find that all models with repulsion display similar
phase diagrams (albeit with distinct quantitative differences)
and that the models without repulsion exhibit similar phase
diagram features as those in with-repulsion models only for
low coupling strengths. We then focus on three homogeneous
aligned states that we identify for different parameter combi-
nations. We measure their velocity and density correlations,
giant number fluctuations, and local density-order coupling,
comparing their properties to previous numerical studies and
to analytical predictions derived from the Toner-Tu theory.

The paper is organized as follows. In Sec. II, we use a
common framework to introduce all the models that we will
study. In Sec. III, we describe the tools that we used to ex-
plore their parameter space and characterize their collective
states. Section IV provides a detailed overview of the phase
space and emergent stationary states of one of these models.
In Sec. V, we analyze the statistical properties of the three

different homogeneous polarized states identified in this
model. Section VI compares the phase diagrams of all the
considered models with repulsion and presents a case without
repulsion. Finally, we end the paper with our discussion and
conclusions in Sec. VIIL.

II. ALIGNMENT MODELS

We will consider four SPP models, with the same angular
relaxation dynamics and continuous time, in two spatial di-
mensions, to study how their macroscopic stationary states are
affected by the details of their interaction rules. All these mod-
els achieve collective motion through interactions that tend
to align nearby neighbors and are defined by dynamical rules
that evolve the particle positions and velocities continuously
in time.

We formulate first a general overdamped equation of mo-
tion in two dimensions, valid for all models, which reads

7 = vori () + F, (1

where 7; is the position of particle i. The self-propulsion speed
v is constant and equal for all particles and the unit vector
7:(6;) = [cos(8;), sin(6;)]” points in the heading direction of
particle i, with angle 6;. The displacement force F; acts on the
particle position but not on its heading direction.

In the continuous-time case considered here, we assume
the following general equation for the orientation dynamics:

1
0; = ;9(91‘, {0;}jes;) + 09 &o. (2)

Here Q(6;, {0} jcs;) is a function that will align, with charac-
teristic time t, the orientation 6; of focal particle i to some type
of (effective) average heading direction of its neighbors j. The
set of particles S; interacting with the focal particle i contains
all particles within a distance R of 7;, which corresponds to
metric interactions, as in the original Vicsek model. We note
that other definitions of neighbors have also been previously
considered, such as selecting a fixed number of the nearest
neighbors [39] or the first shell of Voronoi neighbors [40].
The last term of Eq. (2) adds a §-correlated Gaussian white
noise of strength oy through a random variable & that satisfies
(§0(11)80 (1)) = 8(12 — 11).

The function 2 can be defined in multiple ways. We will
implement here the four options detailed below, all of which
are based on, or inspired by, previous models in the literature
[21-23].

For the first model, it is natural to consider an algorithm
in which the turning forces are proportional to the mean dif-
ference of heading angles between interacting particles. Our
mean-angle (MA) algorithm is thus defined by

Qma = (mod*(; — 0)) ;. 3)

where mod*(6#) = mod(0 + m,27) — 7 is a modified mod-
ulo function that computes the smallest angular difference
between 6; and 6;. Here we use the following short notation
for the average of an arbitrary function f with respect to
neighbors within set S;:

1
(@B jes, = 7 D @i By),
bjes;

with N; =3 1.
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For our second model, we follow the perspective of a
physical process where the alignment force is proportional to
the mean differences of velocity vectors (U; — ¥;) jes, [21,41].
For constant speeds and expressing this interaction in terms of
angular differences (polar coordinates), we obtain our mean-
sine (MS) model, defined by

Qus = (sin(0; — 6:)) ;.- “4)

An advantage of Qg is that it has a clearer physical inter-
pretation and continuous derivative. We expect MS and MA
interactions to be very similar when agents are highly aligned
and we will thus focus on differences between stationary
states in less ordered regimes.

Our third model is a variation of the MS case where the
mean is replaced by the sum of the sine of the heading angle
differences. The resulting additive-sine (AS) model has been
considered in the literature and therefore provides a point of
comparison [22,42]. It is defined by

Qas = ) _sin(0; — 6;). (5)

JESi

We note that this model will strengthen the effect of the local
density, since the alignment force is not divided by the number
of neighbors. Some aspects of the difference between the AS
and the MS model were recently discussed in Refs. [43,44].

Our fourth and final model is a continuous-time generaliza-
tion of the Vicsek algorithm. In this sine-velocity (SV) model,
the turning force is proportional to the sine of the angular
difference between the heading of the focal particle and an
average heading of the neighboring particles. It is thus defined
by

QSV = Sil’l(éj — 9,) (6)
0, = Angle {Z Ao ,)} . (7)
JESi

Here Angle(-) is a function that yields the angle of its argu-
ment and 6; is a Vicsek-style average heading angle. A similar
model was introduced in Ref. [23].

Finally, we define F; in Eq. (1) as a displacement repulsion
force that will reduce particle overlap and limit the formation
of high-density clusters. In order to decouple its effect from
the alignment dynamics, we define F; so that it has no effect
over, or dependency on, the particle headings. In all our mod-
els, this force will be

q |7l =R 7
F=p) — i ®)

. 3
- R 171l

where 7;; =7; —7; and u controls the force intensity. Note
that, with this definition, the alignment interaction range coin-
cides with the repulsion range, so the repulsion and alignment
forces are always simultaneously present for 7;; < R. Since
repulsion vanishes linearly at 7;; = R, however, it is a rela-
tively weak interaction that still allows the alignment forces
to dominate the collective dynamics. Its main role will be
to favor the homogeneous states that will be compared to
analytical results in the following sections. When repulsive
forces are present, we made the choice of setting the repulsion

range and the alignment range equal to R, in order to reduce
the total number of parameters and to avoid the complications
of additional structures that can emerge when the interactions
have an alignment-only region. In addition, we will also con-
sider the case without repulsive forces, with F; = 0, which is
equivalent to the limit case with a vanishing interaction range
for the repulsion.

III. ANALYSIS TOOLS

In this section, we will introduce the nondimensional con-
trol parameters and order parameters that we will use to
characterize our simulation results.

A. Control parameters

Following the approach in Ref. [22], we compute the phase
diagram as a function of two dimensionless control parame-
ters: the Peclet number Pe and the interaction strength g.

The Peclet number is defined in terms of the model param-
eters as

Vo
Pe = Ro?’ 9)
This represents the ratio of the advection rate over the dif-
fusion rate. Smaller Pe values thus correspond to a more
diffusive motion; larger Pe values indicate that self-propulsion
plays a more prominent role. The persistence length (vo/0; =
Pe R) defines the typical scale over which a noninteracting
particle will lose the information of its initial orientation.
Note that, the bigger the persistence length, the larger the
simulation box required to avoid finite-size effects.
The dimensionless interaction strength is defined by

o= —. (10)
70,

It represents the ratio of the alignment rate over the angular
diffusion rate and is expressed in terms of the noise level
and the typical relaxation time t that particles would take to
align in the absence of noise. Larger g values thus represent
a stronger tendency to align, when considering the combined
effect of the aligning forces and noise.

B. Order parameters

We will use two order parameters to characterize the col-
lective stationary states in the phase diagrams: the polarization
® and the clustering I.

The degree of global order is described by the polarization,
an orientational order parameter defined by

N
20
i=I

where N is the total number of particles. With this definition,
@ =1 if all particles move in exactly the same direction and
® = 0 if they are heading in fully random directions.

In addition to orientational order, we also quantify the ho-
mogeneity of states with respect to spatial density variations.
Thus, in what follows, the term “homogeneous” will refer to
the density fluctuations of a system being low. The degree of

, (11

1
b =—
NU()
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density inhomogeneity in the spatial distribution of particles
is quantified by a clustering order parameter, which we define

as

Here the sum is performed over all clusters and #y is the num-
ber of particles within cluster k. Each cluster k is composed
by all particles within the interaction range (closer than R) of
any other particle that is also a member of cluster k. With this
definition, any particle that is not interacting with any other
is the sole member of a cluster with n; = 1. The value of I
varies between 1/+/N and 1. For the low-density case consid-
ered here, I' = 1/+/N implies that no particles are interacting
and that the spatial distribution is highly homogeneous. The
I' = 1 case implies instead that all particles are concentrated
in a single cluster, thus the system exhibits the largest possible
density inhomogeneity. If a maximal cluster size exists, then
the clustering parameter I will always converge toward zero
with increasing system size.

We note that active matter systems that are spatially ho-
mogeneous in the sense of translational invariance can still
exhibit large density fluctuations [27]. We confirmed that in-
homogenous states, e.g., band states or states with a single
giant cluster, exhibit the highest values of the clustering co-
efficient, with I € [0.5, 0.8], while homogeneous states even
with large density fluctuations are typically below I' = 0.25.
Thus, we used this latter value as a threshold to distinguish
the different regions in the parameter space. Nevertheless, we
should highlight that this I alone may not be able to uniquely
distinguish large number fluctuations from phase sepa-
rated states characterized by clusters with a finite maximal
size.

IV. PHASE SPACE

In this section, we will describe the phase space of the
stationary states reached by the MA model, with the alignment
dynamics given by Eq. (3). We will first specify our simulation
setup and then describe, in separate subsections, the main
regions of the phase space.

We begin by defining the quantities that we kept constant
for all simulations. Without loss of generality, we fixed the
length-scale unit by setting R = 1. Note that this makes the
value of Pe equal to the persistence length of noninteracting
particles. In order to reduce the parameter space and focus on
the alignment dynamics, we also set the self-propulsion speed
to vg = 0.2 and the repulsion strength to u = 1.

The mean density was set relatively low for all runs, with
total packing fraction n = N (R/2)?/L?* = 0.3, where R/2 is
the effective radius of the interacting objects and L is the size
of the simulation box. We made this choice because densities
near or above the packing fraction tend to produce crystallized
states that we aim to avoid, since they are incompatible with
the usual active hydrodynamic states that we are interested in
studying. To keep this density fixed, the size of the simulation
box will be L = (R/2)«/Nm /n in all runs below.

We explored the phase space within the range Pe e
[0.5,2048] and g € [0.5,2048] by changing the alignment

relaxation time t and the angular noise level oy, while keeping
all other parameters fixed. In order to ensure the convergence
to a stationary state, each simulation was run for at least
109 steps. To adequately resolve the temporal dynamics, we
used a different simulation time step At for different coupling
strengths, such that At < t/5, with a maximum of Ar = 0.1
for weak coupling and a minimum of Ar = 10~* for strong
coupling. For the smallest time-step values, the number of
simulation steps was increased, reaching up to 10% steps,
which corresponds to a final time ¢ = 10%.

Figure 1 displays three representations of the phase space
of the MA model, as a function of @ and I' in logarithmic
scales. We simulated a system of N = 10* particles in a
periodic box of side L &~ 161.8, using the parameter values
detailed above. Figure 1(a) presents small snapshots of the
final states of runs computed for each parameter combination.
The particles are colored according to their heading directions.
When a region displays collective motion, it therefore appears
with a uniform color and when it has random headings, it
appears in grey. Figure 1(b) shows the corresponding po-
larization ® and Fig. 1(c) the clustering I', averaged over
the final 10° frames of five independent simulations, after
they reach their stationary states. We overlaid on all panels
the approximate boundaries between the different domains,
which were identified by changes in the degree of polarization
or clustering and are clearly reflected in the snapshots. The
region boundaries are primarily meant to guide the eye. They
enable us to visualize the qualitative structure of the phase di-
agram and to identify clear examples of the different observed
collective patterns. The boundary lines are derived from an
analysis of the polarization and clustering order parameter
isolines that were obtained in simulations. We discuss the
specific criteria used to estimate them in the Supplemental
Material [45]. Each of the resulting domains will be discussed
in detail in the subsections below.

To better understand this diagram, we note that variations
of the angular noise Dy, the alignment time t, or the speed
vo correspond to moving along straight lines with different
orientations in this log-log representation. More specifically,
we have that:

(i) Decreasing T will increase g along the horizontal di-
rection and produce stronger alignment. This is equivalent to
decreasing oy and vy /R, keeping Pe constant, which results in
identical dynamics if we either vary oy and vy while rescaling
time and u, or vary oy and R while rescaling space, time, and
the box size L to keep the same mean density 7.

(i) Decreasing oy while increasing 7, to keep g constant,
will increase Pe along the vertical direction and result in
a higher persistence length of noninteracting particles. This
is equivalent to increasing vg/R, which results in identical
dynamics if we rescale time and p, as well as L to compensate
for the change in R and keep 1 unchanged.

(iii) Decreasing the noise oy for a fixed Pe/g = vot/R
ratio will move along diagonals with slope 1 toward higher g
and Pe values. Different diagonals can be reached by changing
vy, T, Or R.

We will now describe the regions identified in Fig. 1. We
note that these do not correspond to standard thermodynamic
phases, given that (i) they are not in thermal equilibrium,
although they have reached statistically stationary dynamics;

044605-4



PHASES AND HOMOGENEOUS ORDERED STATES IN ... PHYSICAL REVIEW E 104, 044605 (2021)

211

/
/

Pe

m

2 3

2—1

2-1 23 27 211

g
(a) Snapshots phase diagram

clustering factor

211
0.7
0.8
0.6
7
0% 2 05
e ,g_) 0.4
04 53 03
0.2 02
0.1
2-1
271 27 2
g
(b) Polarization phase diagram (c) Clustering factor phase diagram

FIG. 1. Three representations of the phase diagram of the mean-angle model with repulsion as a function of the dimensionless control
parameters (coupling strength g and Peclet number Pe). The top panel (a) displays representative snapshots of the stationary states for
different parameter combinations. Each particle is colored according to its heading direction (as shown in the top-left color disk). Regions
with homogeneous color thus indicate high orientational order. The snapshots with blue frames highlight the homogeneous polarized states
analyzed in Sec. V. The bottom panels present the values of the polarization ® (b) and clustering I" (c) order parameters as a function of g and
Pe. The labels A-E identify the different regions discussed in the main text and the red lines sketch the boundaries between them.

(i) they may be the result of finite-size effects, and could In the following subsections, we begin by combining the
disappear in the thermodynamic limit; and (iii) they are not information of all panels in Fig. 1 to characterize five different
necessarily separated by phase transitions at critical bound- regions in the phase diagram of model MA.

aries, and may instead develop progressively. Despite this, we

refer here to the resulting regions as phases, in an analogy to A. Region A: Disorder

standard thermodynamics, and will present below a qualitative Region A displays no global orientational order. It presents
overview of each one for the different models. an “L” shape in the g-Pe plane, since it appears at low g or
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low Pe values. Two subregions can be distinguished within
this region. For low g, we find a homogeneous subregion with
no local clustering, which corresponds to the disordered state
most commonly studied in standard flocking models such as
the Vicsek model. For low Pe and high g values, we observe
instead the formation of locally ordered clusters that move
in different directions and display complex fission-fusion dy-
namics. Although these clusters are typically too small to
produce high polarization, we observe that, for some periods
of time, large clusters can form and significantly increase the
polarization, which results in the observed intermediate mean
@ values. This may be a finite-size effect, however, since large
clusters that significantly affect global order are increasingly
rare in larger systems. We thus consider here these states as
part of region A, as they exhibit no robust, stationary order.

In the limit of g — 0, the model reduces to an active Brow-
nian particle model without alignment. At sufficiently high
density and speed, it may thus exhibit motility-induced phase
separation (MIPS) [46]. However, we do not observe any
phase separation as g — 0 in our simulations, which suggests
that the density studied here is below the critical threshold
required for MIPS [22].

B. Region B: Large-scale bands

Region B exhibits global orientational order and an in-
homogeneous density distribution with large-scale traveling
bands. These bands are aligned perpendicular to the heading
direction and span here the simulation arena, across the peri-
odic boundary condition. Note that these band states appears
only in the vicinity of the order-disorder transition. They can
be linked to a generic instability of the homogeneous ordered
regime that has been identified in previous studies [35,38,47].

C. Region C: Low-coupling homogeneous order

Region C is characterized by ordered stationary states with
homogeneous density. By analyzing simulations of different
sizes, we found that this region can be divided into at least
two subregions. The first subregion, next to region A and
immediately above region B, appears homogeneous and dis-
plays no bands only because of finite-size effects. Indeed, for
large Pe values the persistence lengths become too big for
the simulation box to contain the band structure. We verified
that bands reemerge in the high Peclet number regime if we
simulate larger systems. In the thermodynamic limit, we thus
expect region B to appear between regions A and C, even
for high Pe values, which is in agreement with the instabil-
ity of the homogeneous ordered state close to the transition
predicted in Refs. [35,38,47]. The second subregion can be
found for larger g values (here g > 2%) and contains relatively
homogeneous ordered states that we expect will not present
significant changes in the thermodynamic limit. In this sub-
region, we find the type of regime that most resembles the
homogeneous ordered states (so-called Toner-Tu phase) that
are described theoretically using hydrodynamic and kinetic
theory [25,33,34,36], and that multiple studies have sought
to analyze through simulations of the Vicsek model [26,27].
This is because the other homogeneous ordered regimes that
we identify involve additional factors that are not considered

in these theoretical descriptions: finite-size effects in the first
subregion of region C and repulsive interactions in region E,
as we will discuss below. We note that the degree of homo-
geneity changes within the region. For larger g, we observe
stronger density fluctuations and the emergence of clusters of
all sizes.

D. Region D: Clustering

Region D is characterized by the presence of big clusters
that span the size of the system and is identified in Fig. 1(c)
by its large I" value. The transition from region C to region
D appears to be smooth, since clusters start forming in region
C as we approach the boundary, but the clusters in region D
have distinct characteristics. Indeed, as shown in the supple-
mental material, in region D the size of large clusters along the
heading direction scales faster than their size perpendicular to
it, and faster than the system size L (for fixed mean density).
This implies that a few elongated giant clusters will tend to
dominate the dynamics in very large systems and that the
length of the largest cluster along the heading direction will
often exceed L, so it will connect to itself across the periodic
boundary. We point out that an equivalent clustering regime
was discussed in detail in Ref. [22] and that the transition
from a homogeneous state to this regime can be described
theoretically by analyzing the stationary distribution of cluster
sizes [22,48].

E. Region E: Strong-coupling homogeneous order

Region E contains homogeneous, ordered states that are
reached as the alignment strength g is increased beyond the
clustering state. In this regime, large clusters disappear be-
cause particles align almost immediately when they come into
contact. This limits their overlap and, when combined with
the repulsive interactions, disfavors the formation of the high-
density regions required to sustain large persistent clusters.
We observe instead small clusters that, in contrast to region
D, do not scale with system size and tend to be shorter along
the heading direction than perpendicular to it. We note that
regions C and E thus correspond to two different types of
homogeneous ordered regimes, separated by the clustering
region D.

V. STATISTICAL PROPERTIES OF HOMOGENEOUS
POLARIZED STATES

In this section, we will study in detail the homogeneous po-
larized states that we find within the phase diagram presented
above. This type of states should satisfy the assumptions of
the Toner-Tu theory and have thus been the focus of multiple
theoretical analyses [25,33,34,49]. We are interested here in
distinguishing which of them, if any, best matches the corre-
sponding analytical results.

We selected two states in region C and one in region E that
display high polarization ® =~ 1 and low clustering I" ~ 0.
These are marked by blue frames in Fig. 1(a) and defined as:
state C-1 with Pe = 2048, g = 4 (® = 0.86, ' = 0.003); state
C-2 with Pe =512, g =64 (® = 0.98, I' = 0.015); and state
E with Pe = 16, g = 2048 ( = 0.94, I' = 0.003). Note that
we distinguished two points in region C because, as discussed

044605-6



PHASES AND HOMOGENEOUS ORDERED STATES IN ...

PHYSICAL REVIEW E 104, 044605 (2021)

in Sec. IV, state C-1 is in a subregion that is homogeneous
only due to finite-size effects, whereas states C-2 and E are
expected to remain homogeneous for any system size. We
will compare below the statistical properties of these three
states, computing their correlation functions, giant number
fluctuation, and local density-order relationship.

We begin by examining the equal-time correlation function
of the velocity fluctuations, defined in a continuous field by

C(F) = (80(Fo, 1) - 80(Fo + 7, )71 (13)

where the mean (-)7, , is taken over space 7y and time ¢, after
a stationary state is reached. Here 8v(7,1) = ¥(¥, 1) — V()
denotes the velocity fluctuations, with (7, t) the velocity field
and \7(1‘) = (U(#, 1))7 the mean velocity, averaged over space
at time ¢. We decompose this function into C(¥) = C(¥) +
C, (7) by defining

C||(7) = <5U||(?0,l‘) '(Sv\\(70+?’t)>70,z’ (14)

CL(F) = (Bvi(Fo, 1) - SvL(Fo + 7, 1))z, 4 15)

as the correlation functions of the velocity fluctuations par-
allel and perpendicular to the mean heading direction, dv
and v, respectively. We will focus below on C, (7), since
the first order approximation of v only involves Sv; in
highly polarized states. Finally, we will present our results in
Fourier space, to reduce the noise of the resulting curves, by
defining

CJ_@) = (5~UJ_@» t) : 5~UJ_(_‘7: t))z~ (16)

Here § = (g, q.) is the spatial frequency vector, §v (g, t) is
the Fourier transform of dv, (7, t), and the mean is computed
over t. We note that the self-propulsion and local advection
fields always coincide in the Toner-Tu hydrodynamic theory,
but could have in principle distinct values, given by vy#;(6;)
and 7;, respectively. However, here due to symmetry of the
repulsion force and the corresponding displacements, they are
equivalent on the coarse-grained level. We used the former
in the results presented below but have also verified that we
observe no significant differences when using the latter. The
numerical details of the evaluation of C, (§) are provided in
the supplemental material. In order to gather better statis-
tics, we simulated larger systems of 1.28x 10% particles with
the same mean density for this analysis, while keeping the
larger systems respectively homogeneous and polarized as the
systems of 10* particles. Here we note that quantifying the
exact dependence of correlation functions on distance can
be surprisingly challenging in active matter system. Despite
the long-history of research on the Vicsek model, only very
recently the corresponding scaling exponents have been nu-
merically measured to a high precision for the homogeneous,
ordered state using massive-scale numerical simulations [27].
Therefore our approach is the direct comparison of the scaling
of correlation functions for different states, rather than a high-
precision estimation of scaling exponents for all states, with
the latter being far beyond the scope of this work.

Figure 2 displays the resulting C,(q;) = C,(0,¢,) and
C.(q)) = Ci(qy, 0) correlation functions for states C-1, C-2,
and E in the MA model. The Toner-Tu theory predicts that,
regardless of model details, C| (¢, ) and C, (¢) should follow
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FIG. 2. Correlation functions in Fourier space of the perpendicu-
lar velocity fluctuations (with respect to the mean heading direction)
as a function of the perpendicular and parallel frequency vectors (left
and right columns, respectively) for the three homogeneous polarized
states analyzed in Sec. V: state C-1 [(a) and (b)], state C-2 [(c) and
(d)], and state E [(e) and (f)]. The orange dashed lines with different
k exponents have been added for reference.

power laws with exponents k = —1.2 and k = —2, respec-
tively [25,34,49]. Despite presenting significant fluctuations,
the figure clearly shows whether the numerical curves are
compatible or not with these exponents. To clarify the influ-
ence of finite-size effect on the correlation function, we also
carried out computations for smaller system sizes, which con-
firm the trends discussed below (see Supplemental Material
[45D.

Figures 2(a) and 2(b) show that state C-1 strongly devi-
ates from the theoretical prediction, displaying curves that
are compatible with much more shallow exponents. It thus
appears to correspond to a very different type of homogeneous
ordered state than that analyzed in the Toner-Tu theory. This is
consistent with our observation in Sec. IV noting that the ho-
mogeneity of state C-1 is the result of finite-size effects, since
the shallow exponents may reflect the presence of correlations
that span the scale of the simulation arena.

Figures 2(c) through 2(f) show that states C-2 and E par-
tially match the Toner-Tu predictions in different ways. In
state C-2, we have kj &~ —2, which coincides with the the-
ory, and k; ~ —1.33, which is slightly steeper than predicted
but matches the numerical results in Ref. [27]. In state E,
we have kj ~ —1.6, which is shallower than predicted, and
k; ~ —1.2, which agrees with the prediction. We verified
that the estimated values of these scaling exponents remain
consistent for different runs and system sizes. We hypothesize
that the cause of these agreements and differences is found
in the underlying clustering structures. Indeed, since clusters
are elongated along the mean velocity in state C-2 and per-
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FIG. 3. Standard deviation as a function of the mean number
of particles in boxes of growing size for the three homogeneous
polarized states analyzed in Sec. V. Dashed lines with different o
exponents are added for reference. States C-2 and E display clear
giant number fluctuations that match the theory, whereas state C-1
does not, since its o exponent is only slightly above 1/2.

pendicular to it in state E, these directions will provide longer
homogeneous regions, which is consistent with the fact that
these are the same directions that best match the predicted
exponents for each case.

We now turn our attention to the giant number fluctuations.
These are defined as variations of the number density with a
standard deviation that scales as

(N2) — (N)* oc (N)* a7

and with & > 1/2. Giant number fluctuations are a common
feature in systems of self-propelled particles [26,27,50,51].
The Toner-Tu theory predicts their presence in the homo-
geneous ordered state, with o = 0.8. In order to test if this
exponent holds for the three homogeneous polarized states
selected, we measured the standard deviation of the number
of particles in boxes of growing size in our numerical sim-
ulations. Here again, we used a larger system of 1.28x10°
particles.

Figure 3 shows that all the selected homogeneous ordered
states display giant number fluctuations, but with different o
exponents. While states C-2 and E match well the Toner-Tu
prediction, state C-1 displays a much lower slope (although
the slope of state C-1 can fluctuate significantly from run to
run, sometimes reaching values as high as o & 0.65). These
results provide further evidence that states C-2 and E can
be consistent with the Toner-Tu theory but state C-1 is not.
The lower exponent in the C-1 case can also be interpreted as
resulting from a finite-size effect where the simulation arena
may be too small to develop the processes leading to giant
number fluctuations.

In order to further characterize the different homogeneous
ordered states, we also measure the correlation between local
density and local polarization. To do this, we first find the
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FIG. 4. Local density-order correlation for the three homoge-
neous polarized states analyzed in Sec. V. Each curve presents the
mean local polarization in regions with a given local density. The
lighter area displays its standard deviation. States C-2 and E show a
clear local density-order correlation but state C-1 has almost constant
polarization for all densities.

5 nearest neighbors of each particle and use their positions
and velocities to evaluate the local density and polarization, as
detailed in the Supplemental Material. We then compute the
mean local polarization and its standard deviation for each bin
of values of the local density. For these calculations, we used
the last 100 frames of simulations with 3.2x 10° particles.

Figure 4 shows the resulting local density-order correlation
for the three homogeneous ordered states considered here.
In states C-2 and E, the mean local polarization increases
monotonically with the local density, that is, order is enhanced
at higher densities. This is a common situation in alignment
models with metric (distance dependent) interactions, where
the feedback between density and order produces persistent
spatial structures in which higher density results in averaging
over more particles and thus in better convergence to align-
ment and higher polarization. We note that the quantitative
difference between the curves for state C-2 and state E is
due to their specific chosen parameter combinations and is
not representative of a consistent difference between other
states near C-2 and E. State C-1 behaves here, again, very
differently, since the local polarization remains constant and
appears to display no correlation with the local density. This
can be understood by noticing that the particles in this state
have high speed and slow alignment dynamics, which implies
that the density-order feedback does not have time to develop
within localized structures in the simulation arena, due to
the aforementioned finite-size effects. Each particle averages
instead the mean heading of the agents within the different
spatial regions it traverses. The alignment dynamics thus re-
sembles a mean-field description of the system, showing no
correlation with the local density.

Our final analysis of the homogeneous polarized states
will focus on the spatial density distribution, given that the
simulation snapshots show that they all display some degree
of clustering. We thus examine the two-dimensional density
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FIG. 5. Fourier transform of the two-dimensional density autocorrelation function for the three homogeneous polarized states analyzed in
Sec. V; states C-1 (a), C-2 (b), and E (c). The value of S,(g) is computed using Eq. (18). The mean heading direction corresponds to +¢,. All
cases display a ring at ||7|| = 1, resulting form the R = 1 alignment and repulsion range, but other characteristic features display significant

differences.

autocorrelation function, given by

A =\ ,—2TiG-T 33
SP(Q) - pr(7)d7 /Cp(r)e dr’ (18)
Co(F) = (p(Fo, 1) p(Fo + 7, 1))7.1- 19)

-

Here p(7,t) describes the local density field at position 7
and time ¢, obtained numerically through spatial binning (see
supplementary material), and the mean (-)z , is taken over
space and time after the stationary state is reached. For these
computations we used again the last 100 frames of simulations
with 3.2x 10° particles.

Figure 5 shows S,(g) for the three states considered. The
heading direction corresponds here to +¢,. All panels display
a similar circle of radius § = 1, which is a consequence of the
repulsion range R = 1 determining a typical minimal distance
between particles. We note that this circle is more blurry
for state C-1 than for state C-2, due to the lower interaction
strength g. For state E, it also appears to be less circular
[Fig. 5(c)], which is a signature of the emergence of structures
in the spatial distribution within clusters. Near the origin, we
observer that S,(g) is higher in the +x direction than in the
4y direction for states C-1 and C-2, while the opposite is true
for state E. This reflects the presence of large-scale density
structures of clusters that are typically elongated along the
heading direction in states C-1 and C-2, but perpendicular to
it in state E.

In sum, the results presented above show that the three
homogeneous ordered states have distinctive characteristics
when analyzed in detail. Importantly, none of them seems to
fully match the Toner-Tu theoretical predictions, at least in the
systems of over a million particle considered here.

We found that state C-1 differs the most from the Toner-Tu
theory. This can be explained by the fact that its homoge-
neous nature is the result of finite-size effects, as discussed
in Sec. IV, and thus inconsistent with the infinite domain
assumed by the theory. In this state, the low g and high Pe
values make the interactions too weak and the self-propulsion
speeds too high to produce relevant density-velocity couplings
at the scale of the system. Instead, the typical persistence
length is comparable to the system size and the particles
appear to display quasiballistic motion at the scale of the

arena, thus resembling a gas and approaching mean-field
behavior. This explains all our observations: the shallow cor-
relation functions in the velocity fluctuations, the reduced
giant number fluctuation (with « = 0.55), and the lack of
correlations between the local polarization and local density.

States C-2 and E match better the Toner-Tu theory, each
in a different way, although neither reproduces all the pre-
dicted exponents. We found that both match fairly well the
expected giant number fluctuations, but state C-2 displays a
slightly steeper correlation function exponent k; and state
E a significantly shallower k; than predicted by the theory.
We hypothesize that these deviations are related to the pres-
ence of anisotropic cluster structures that are still apparent
in the selected states, despite being among the most homo-
geneous in our phase diagram. Given the presence of giant
number fluctuations at all scales, it is an open question if these
structures (and, therefore, these deviations from the predicted
exponents) will remain in larger systems.

VI. COMPARATIVE ANALYSES OF THE PHASE SPACE

We will now compare the phase diagrams and typical
states obtained for variations of the MA model. First, we will
analyze the three variations introduced in Sec. II (the MS,
AS, and SV models), all of which satisfy similar alignment
dynamics while following different specific interaction rules.
We will then describe how the phase diagrams change without
repulsive interactions.

A. Comparative description of the four models

We present here phase diagrams for the MS, AS, and SV
models detailed in Egs. (4), (5), and (6), respectively, compar-
ing them to the MA case studied in previous sections. For each
model, we performed 5 independent simulations and collected
the last 1000 frames, after the order parameters had reached
their stationary values. As in Sec. IV, the following results
were obtained by averaging over the 5x 1000 frames selected
for each model.

Figure 6 presents the phase diagrams obtained for all four
models in terms of the polarization and clustering factor in-
troduced in Eqgs. (11) and (12), respectively. For comparison,
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FIG. 6. Phase diagrams of the polarization ® and clustering I"
order parameters (left and right columns, respectively) for the four
continuous alignment models, with repulsive interactions, introduced
in Sec. II. Each row displays, from top to bottom, the diagrams for
the mean-angle (same as on Fig. 1), mean-sine, additive-sine, and
sine-velocity models. The A-E labels identify the different regions
and the red lines sketch the boundaries between them.

the first row shows the same MA diagrams displayed in
Fig. 1(a). Our first observation is that their overall structure is
quite similar, despite the differences in the way each algorithm
tends to align the local velocities. All the regions identified in
Sec. IV are present in all cases and cover similar areas of the
phase diagram, and the relative positions between the different
areas are also similar. We note, however, several differences in
the details, which we describe below.

The first and second rows of the figure show that the MS
and MA phase diagrams are very similar, with their main
difference being that the boundaries among regions A, B,
and C, are displaced. This is consistent with the fact that the
(6; — 6;) term in Egs. (3) and (4) will typically be large in the
disordered region, so 2ys will be smaller than Qy4 and the

system will have a lower tendency to align in the MA model,
which therefore displays a larger region A. Instead, in the
highly polarized regions we have mod*(6,—6;) ~ sin(6;—6;),
so the diagrams will be almost identical.

The AS diagrams in the third row of the figure are the
most different from all others. In this model, the interaction
strength is not normalized by the number of neighbors, so the
alignment force will be generally stronger and increase with
higher local density. This reduces the size of the disordered
region A and enhances the density-alignment feedback, thus
increasing inhomogeneities, which results in a larger region
B and D. In the high-g regime, this effect is stronger and it
even changes the structure of the displayed phase diagrams by
splitting regions A and E. These observations are consistent
with those of Refs. [43,44].

Finally, the SV diagrams in the fourth row are the most
similar to the MA case studied in previous sections. Here
again, we expect the dynamics to match closely in the ordered
regime, where the typical differences between heading angles
are small. Interestingly, in this case we find that the low
alignment regions also match well the MA model results.

Figure 7 compares representative states within each region
of the phase diagram for the four models. From top to bottom,
we present typical snapshots of: disordered states (row A),
perpendicular band states (row B), finite-size homogeneous
states (row C-1), low-g homogeneous states (row C-2), large
longitudinal cluster states (row D), and high-g homogeneous
states (row E). Note that the snapshots selected in each region
do not correspond to exactly the same Pe and g values for
the different models, since the region boundaries change and
their most representative states are displaced. For this figure,
we selected the following (Pe,g) parameter combinations. For
the MA model, A: (256,1), B: (32,2), C-1: (2048,16), C-2:
(128,32), D: (256,1024), E: (64,2048); for the MS model, A:
(512,1), B: (16,4), C-1: (1024,4), C-2: (256,32), D: (32,256),
E: (64,2048); for the AS model, A: (512,0.5), B: (128,2), C-1:
(1024,2), C-2: (2048,64), D: (1024,1024), E: (32,512); and
for the SV model, A: (256,1), B: (16,2), C-1: (1024,4), C-2:
(256,64), D: (128,512), E: (64,1024).

The figure shows that the general features of each char-
acteristic state are very similar across models, although we
do observe some small differences. For example, the bands in
the states within region B appear to be less defined in the AS
model. This may be because the enhanced density-alignment
feedback discussed above favors local clusters instead of the
larger band structures. We also observe that, in general, the
AS model displays stronger small-scale clustering in regions
B, C-2, and D. It is important to point out, however, that
although some of the differences between models may appear
consistently when comparing the snapshots in the figure, they
may still be due to their different exact locations in the phase
diagrams. Extracting general conclusions on the detailed spa-
tial distributions favored by different models will therefore
require further investigations.

B. Comparing to models without repulsion

We now study how the phase diagrams will change if
there is no repulsion between particles, that is, for 4 = 0 in
Eq. (8). This will connect our results to the many studies in
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FIG. 7. Snapshots of representative states of the different phase diagram regions shown in Fig. 6 for the four continuous alignment models,
with repulsive interactions, introduced in Sec. II. Each particle is colored according to its heading direction, as in Fig. 1(a). The snapshots of
equivalent regions display similar features for all four models.

the literature that consider self-propelled point particles with-
out repulsion [15,17,19,26,27,35,38]. Our simulations for this

case are less exhaustive, since they only aim to identify the

main differences with respect to the u = 1 models discussed
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above. Note that they also have increased computational cost,
due to the formation of high-density clusters.

Figure 8 presents the phase diagram for the MA model

with u = 0. The changes in this diagram with respect to the
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FIG. 8. Phase diagram with representative snapshots of the mean-angle model without repulsion as a function of the coupling strength
g and Peclet number Pe. Each particle is colored according to its heading direction (as shown in the top-left color disk). The labels A-D
identify the different regions discussed in the main text and the red lines sketch the boundaries between them. When comparing to the case
with repulsion in Fig. 1, we observe similar features for low g but significant differences for high g. In particular, in this case without repulsion,
we note that the clusters in region D have much higher density and that no homogeneous region E is found for high g values.

case with repulsion are similar to those observed for the MS
and the SV models, but present significant differences when
compared to the AS diagrams. We will begin by analyzing this
MA diagram, also representative of the MS and SV cases, and
then discuss the AS case at the end of this section. In addition,
we present in the supplemental material (see Fig. F1) a phase
diagram equivalent to Fig. 8 for the AS model and snapshots
equivalent to those in Fig. 7 but with © = 0 for all models,
where the effects of removing repulsive forces can be further
compared.

We begin by noting that Fig. 8 does not present significant
changes for low g values with respect to Fig. 1(a). In the
disordered region A with g < 2, no clusters are formed due
to the weak alignment forces and the spatial distribution re-
mains homogeneous. The structure also remains very similar
in region B, since the density-order coupling mechanism that
produces the bands is still present for u = 0. These bands
appear to be thinner, however, as the lack of repulsion allows
their local density to become higher. We also note that region
B extends to slightly lower values of Pe. For example, the

(Pe,g) = (2,2) snapshot corresponds to a disordered state in
Fig. 1(a) but to an ordered state with a band in Fig. 8. This
appears to be because the very thin, high-density band in the
latter (which can only form without repulsive forces) helps
the system remain ordered at higher noise levels. Finally, as in
the u = 1 case, we find a low g subregion of region C, above
region B, where the homogeneity is due to finite-size effects.

For higher values of g, the diagrams display significant dif-
ferences. Indeed, the homogeneous ordered region C presents
changes in, both, its states and its boundaries. The clusters
that form as g is increased are now elongated perpendicular
to the heading direction, instead of along it. In addition, the
density fluctuations now form ripples at high Pe values that
were not observed for u = 1. Finally, for Pe < 1 and high
g, we now find ordered states. This appears to be due to the
high-density clusters that form without repulsion, since these
remain aligned over longer distances and thus overcome the
short persistence length of individual particles.

The boundary between regions C and D cannot be defined
in Fig. 8 the same way as it was in Fig. 1, because the
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clusters that now form in region D never span large spatial
scales. Indeed, due to the lack of repulsion, as we move into
region D a few high-density clusters start gathering most of
the particles while collapsing into smaller areas. Since our
focus is not on determining the exact transition lines, we draw
an approximate boundary between these regions when this is
observed (which could be made more precisely by examining
the distribution of cluster sizes [22]). As we move further into
region D, increasing g and decreasing Pe, the clusters gather
more particles and become even denser, appearing to behave
as rescaled self-propelled units that move collectively for long
periods of time. Their dynamics become very slow, however,
so we cannot be certain of their long-term behavior in the
thermodynamic limit.

As g continues to be increased, no homogeneous region E
appears in Fig. 8, in contrast to what was observed in Fig. 1,
because agents now collapse into clusters due to the lack of
repulsion. As we approach the corner of the diagram with
high g and low Pe, however, we note that these clusters start
to spread out due to a different mechanism. In this regime,
the aligning dynamics is so fast that the particles immediately
start moving with almost the exact same velocity of any clus-
ter with which they come into contact. This leads them to form
extended, semirigid dendritic structures through a mechanism
that is reminiscent of the diffusion limited aggregation process
[52,53].

Finally, we turn our attention to the phase diagram of the
AS model without repulsion (included in the supplemental
material). As mentioned earlier in this subsection, this is the
only case that changes in ways that are significantly different
from the other models when repulsive forces are removed.
Although the same A-D regions can be observed, we can
highlight two important differences. First, the boundary be-
tween regions B, C, and region D appears at much higher Pe
for the AS model than for other models without repulsion.
Second, the AS model displays relatively ordered states even
for the lowest g = 2~! coupling strength values in the diagram
(at Pe = 2, for example). We interpret both of these features
as resulting from the additive nature of the AS model, which
leads to a stronger density-alignment coupling that results in
high-density clusters. Indeed, these clusters will reduce the
size of regions B and C, thus moving their boundary with
region D upwards, as they prevent the formation of bands
and homogeneous states. This is consistent with the results
recently reported in Refs. [43,44], although we point out that
we do not view the additive case as producing fundamentally
different dynamics, but as instead displacing the boundaries in
the phase space. The formation of high-density clusters also
explains the presence of ordered states even at very low g
and Pe levels, since these can reach much higher persistence
lengths than individual particles.

VII. DISCUSSION AND CONCLUSION

We have considered four continuous-time models of col-
lective motion with alignment interactions in their versions
with and without repulsion. We explored their phase space as
a function of two nondimensional parameters (Peclet number
and interaction strength) that control the persistence length
of noninteracting particles and the alignment rate of interact-

ing particles, respectively. We also identified three different
homogeneous ordered states and compared their properties to
previous numerical results and analytical predictions.

We note that our work is not modeling specific experimen-
tal systems, such as cases where the alignment emerges from
steric interactions between anisotropic particles [54]. It aims
instead to be a general investigation of phenomenological
models that combine repulsion and polar alignment [19]. It
thus provides a first-order approximation of a variety of dense
active matter systems in physics [11], biology [6], and engi-
neering [55] where the individual dynamics can result from
a complex combination of multiple physical mechanisms that
are not necessarily reducible to one type of interaction alone.

Our simulations show that all the models with repulsion
present similar phase diagrams, with regions that display
either disordered states or ordered states with different den-
sity distributions (homogeneous, with density bands, or with
clusters elongated along or perpendicular to the heading di-
rection). The resulting phase diagrams highlight the fact that
the states of the SPP models typically depend strongly on at
least two independent control parameters. This suggests that
the single parameter scans performed in much of the literature
by only changing the noise level can miss potential emergent
states.

In this context, when comparing to previous studies of the
Vicsek model (VM), it is important to point out that in the VM
we can also control Pe in isolation by changing the particle
speed. However, since the alignment strength is not a free
parameter in the VM (given that it is a discrete time algorithm
with instantaneous alignment) there is no way to control g
independently. On the other hand, changing the angular noise
o/, the standard control parameter in the VM, while keeping
all other parameters constant is equivalent to keeping the ratio
of the Peclet number over the coupling strength constant,
which corresponds to moving diagonally in the Pe-g phase
diagram.

We also note that if we vary the noise while fixing Pe, the
system will visit different regions. If we fix Pe at high values,
then the system will visit regions A, B, and C, but rarely region
D and never region E. Instead, at intermediate Pe values, the
system will only visit regions A and D. Finally, at low Pe and
high g values, it will only visit regions A and E.

The phase diagrams without repulsion resemble the corre-
sponding cases with repulsion for low values of the coupling
strength g, but also display significant differences, in partic-
ular, for high g. Indeed, when repulsion is present, we found
a new homogeneous state E (for g values beyond the clus-
tering state D) that had not been previously reported in the
literature. Without repulsion, the high g states produce instead
high-density clusters in all our models.

Previous works suggested a fundamental difference be-
tween alignment models that are based on averaging or on
the summation of angular differences, corresponding here to
the MS or the AS model, respectively [43,44]. These differ-
ences have been linked to a different density dependence of
the alignment interaction. In our case, the AS model with
repulsion exhibits a qualitatively similar phase diagram when
compared to the other three models, likely due the repulsion
effectively inhibiting large density fluctuations and high-
density clusters. However, a detailed analysis of particular
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states such as the band regime discussed in [43], which is
beyond the scope of this study, may reveal important differ-
ences. Furthermore, we note that, in line with these previous
results, the phase diagram of the AS model without repulsion
(included in the supplemental material) shows significant dif-
ferences when compared to the corresponding diagrams for
our averaging models (shown in Fig. 8).

The general features of all our phase diagrams can be
understood in terms of the interplay between the orientational
and the positional dynamics. The orientation of each particle
can be viewed as an internal state that depends on the align-
ment interactions with other particles and on the noise. This
state then affects the positions, which in turn determine which
particles interact. When repulsive forces are present, they will
affect the positions of interacting particles, which can also
change which particles interact, but not their orientations. This
perspective can be expressed in terms of an adaptive network,
as described in Refs. [56-58], where each node is associated
to a state that corresponds to its orientation and the links
between nodes represent the interactions, defined through a
changing proximity network that depends on positions.

The language of adaptive networks can be used to describe
the different regions of the phase diagram as a balance be-
tween the node state dynamics and the connectivity dynamics.
For high Pe and low g, the connectivity changes much faster
than the node states, i.e., the network rewiring time is much
shorter than the typical alignment time of interacting particles.
Thus, we effectively have a well-mixed system, as considered
for example in the context of chemical oscillators [59,60],
which can typically be described by a nonspatial (global)
mean-field theory. By contrast, for low Pe and high g, the
connectivity changes much slower than the node states and in
extreme cases the system can be approximated by a fixed in-
teraction network with alignment dynamics, similar to the XY
model. In this limit, slowly evolving spatial structures emerge
from the feedback between the interaction topology and the
angular dynamics. This explains the strong differences that
are observed with and without repulsive forces, since these
will affect this topology and therefore lead to the convergence
to other states. Between these two limits, the node dynamics
and network evolution are entangled, resulting in the region
of highest complexity. This is reflected in the emergence of
clusters with a rich variety of spatial features and clustering
dynamics.

Our results appear to show some generic characteristics of
all SPP models with alignment interactions, although these
could display changes in different parameter regimes. For ex-
ample, in order to limit our explorations, we only considered a
specific mean density, given by tNR?/(4L?) = 0.3. Although
we did not observe significant differences for small changes
of this mean density in a limited set of exploratory simula-
tions of the MA model that we performed for TNR?/(4L?) €
[0.2, 0.4] (not included in this paper), the phase diagram could
present significant changes at very low or very high density
values. Furthermore, we also reduced the parameter space by
considering the same interaction range for the repulsion and
alignment terms, so some of the observed structures could
change if these are set to be different. We note, however,
that much of the phase space appears to be very similar even
without repulsive interactions, which implies that they are

probably also similar for any repulsion range smaller than
the alignment range. Despite all these considerations, further
parameter explorations will be needed in future work to fully
understand the generality or specificity of the presented re-
sults.

Our analysis of the three distinct homogeneous polarized
states identified in the phase space showed that two of these
(C-2 and E) match different aspects of the predictions of the
Toner-Tu continuous hydrodynamic theory, while not match-
ing others. We noted that the differences could be attributed
to a lack of complete homogeneity in the spatial distributions.
The third state (C-1), which seems to be fully homogeneous,
produces results that strongly differ from the theoretical pre-
dictions, since the observed homogeneity appears to stem
from a combination of finite-size effects, weak alignment, and
large persistence length. Because of this, state C-1 seems to be
better described by a well-mixed, weakly interacting particle
system [59,60] than by the homogeneous ordered state of
an active fluid represented by the Toner-Tu theory [25]. We
point out that, although C-1 may be the result of finite-size
effects, it corresponds to a type of well-mixed, large-scale
ordered state with weak coupling between local density and
alignment that could be of broader relevance. These could
be observed, for example, in topological models that consider
interactions between a fixed number of nearest neighbors or in
cases where the interactions are restricted to the first neighbors
in a Voronoi tessellation [40]. Given the delocalized nature of
the effective alignment interactions in state C-1, its features
may be well captured by a global mean-field theory. It would
thus be interesting to develop this type of theory in future work
to predict the observed properties and exponents..

We note that we do not observe MIPS in the absence
of alignment interactions. In the corresponding limit in our
simulations, g — 0, we find no signatures of phase separa-
tion for the densities and repulsion parameters considered
here. Thus, the observed cluster formation at intermediate
alignment strengths [see Fig. 1(a)] appears to be different
from the standard MIPS case that has been widely studied
in active matter systems, which assumes no alignment inter-
actions [46]. However, we also note that there are previous
studies that discuss cluster formation in models with align-
ment interactions, in the context of MIPS. These argue that
velocity alignment may promote MIPS-like emergent states
[30,61,62], which is in line with our observations.

Taken together, our results show the existence of at least
three different types of homogeneous polarized states, in all
considered alignment models with repulsion, that appear to
match the assumptions of the Toner-Tu theory. In addition to
C-2, which we identify as the homogeneous ordered active
matter state that had been the focus of most previous studies,
we find state C-1, which is induced by strong finite size
effects and characterized by delocalized effective alignment
interactions, and state E, which appears only in the presence of
repulsion for sufficiently high alignment strengths. Whereas
state C-1 is clearly not well described by the Toner-Tu theory,
states C-2 and E match different aspects of its predictions,
while showing some significant deviations in others. Although
it is possible that in larger simulations the systems reach a
scale at which the coarse grained density distribution is homo-
geneous, we did not find any evidence of this in our results. In
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addition, we note that the implications of the presence of giant
number fluctuations at all scales are still not well understood
and that they could result in spatial inhomogeneities that also
emerge at all scales. Further analytical studies and large-scale
simulations could help elucidate this issue.

Finally, our work shows that the alignment based SPP
models display a plethora of different states in rich phase
diagrams with a diversity of density structures that go beyond
the homogeneous ordered states that have been the focus
of much research. In particular, our work shows that the
phase diagrams of different models exhibit a similar structure,
with similarly distributed regions. The corresponding states
could be relevant for experimental systems and display model-
independent features, as well as specific model-dependent
ones, that require further investigations. Potential extensions
of our work include considering larger scales; different repul-
sion forces and ranges; variable speeds; Voronoi, topological,
or non additive interactions; and algorithms that produce
collective motion without depending on explicit alignment

terms [24,40,43,63]. Although many of these extensions have
been considered in the literature, we believe that the sys-
tematic exploration of their phase diagrams will provide
new insights into the various possible states of active matter
systems.
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